BAAR, K. (2006) ‘Training for Endurance and Strength’, Medicine & Science in Sports & Exercise, 38(11), pp. 1939–1944. Available at: https://doi.org/10.1249/01.mss.0000233799.62153.19.
Baar, K. and Hardie, D.G. (2008) ‘Small molecules can have big effects on endurance’, Nature Chemical Biology, 4(10), pp. 583–584. Available at: https://doi.org/10.1038/nchembio1008-583.
Barrès, R. et al. (2012) ‘Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle’, Cell Metabolism, 15(3), pp. 405–411. Available at: https://doi.org/10.1016/j.cmet.2012.01.001.
Bogdanis, G.C. et al. (1995) ‘Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.’, The Journal of Physiology, 482(2), pp. 467–480. Available at: https://doi.org/10.1113/jphysiol.1995.sp020533.
Boluyt, M.O. et al. (2006) ‘Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20’, PROTEOMICS, 6(10), pp. 3154–3169. Available at: https://doi.org/10.1002/pmic.200401356.
BOOTH, F.W. et al. (1998) ‘Molecular and cellular adaptation of muscle in response to physical training’, Acta Physiologica Scandinavica, 162(3), pp. 343–350. Available at: https://doi.org/10.1046/j.1365-201X.1998.0326e.x.
Burniston, J.G. (2008) ‘Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise’, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(7–8), pp. 1077–1086. Available at: https://doi.org/10.1016/j.bbapap.2008.04.007.
Burniston, J.G. (2009) ‘Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise’, PROTEOMICS, 9(1), pp. 106–115. Available at: https://doi.org/10.1002/pmic.200800268.
Burstein, B. and Nattel, S. (2008) ‘Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation’, Journal of the American College of Cardiology, 51(8), pp. 802–809. Available at: https://doi.org/10.1016/j.jacc.2007.09.064.
Bye, A., Langaas, M., et al. (2008) ‘Aerobic capacity-dependent differences in cardiac gene expression’, Physiological Genomics, 33(1), pp. 100–109. Available at: https://doi.org/10.1152/physiolgenomics.00269.2007.
Bye, A., Høydal, M.A., et al. (2008) ‘Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO’, Physiological Genomics, 35(3), pp. 213–221. Available at: https://doi.org/10.1152/physiolgenomics.90282.2008.
Carè, A. et al. (2007) ‘MicroRNA-133 controls cardiac hypertrophy’, Nature Medicine, 13(5), pp. 613–618. Available at: https://doi.org/10.1038/nm1582.
Casey, A. et al. (1996) ‘Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans’, American Journal of Physiology-Endocrinology and Metabolism, 271(1), pp. E31–E37. Available at: https://doi.org/10.1152/ajpendo.1996.271.1.E31.
Catalucci, D. et al. (1AD) ‘Physiological myocardial hypertrophy: how and why?’, 13, pp. 312–324. Available at: https://www.bioscience.org/2008/v13/af/2681/fulltext.htm.
Chien, K.R. (2007) ‘Molecular medicine: MicroRNAs and the tell-tale heart’, Nature, 447(7143), pp. 389–390. Available at: https://doi.org/10.1038/447389a.
Creemers, E.E.J.M. et al. (2003) ‘Deficiency of TIMP-1 exacerbates LV remodeling after  myocardial infarction in mice’, American Journal of Physiology-Heart and Circulatory Physiology, 284(1), pp. H364–H371. Available at: https://doi.org/10.1152/ajpheart.00511.2002.
Daniels, A. et al. (2009) ‘Connective tissue growth factor and cardiac fibrosis’, Acta Physiologica, 195(3), pp. 321–338. Available at: https://doi.org/10.1111/j.1748-1716.2008.01936.x.
Darveau, C.-A. et al. (9AD) ‘Allometric cascade as a unifying principle of body mass effects on metabolism’, 417, pp. 166–170. Available at: https://www.nature.com/articles/417166a.
Di Biase, V. and Franzini-Armstrong, C. (2005) ‘Evolution of skeletal type e–c coupling’, The Journal of Cell Biology, 171(4), pp. 695–704. Available at: https://doi.org/10.1083/jcb.200503077.
Diffee, G.M. (2004) ‘Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training’, Exercise and Sport Sciences Reviews, 32(3), pp. 112–119. Available at: https://doi.org/10.1097/00003677-200407000-00007.
Duntas, L.H. and Popovic, V. (2013) ‘Hormones as doping in sports’, Endocrine, 43(2), pp. 303–313. Available at: https://doi.org/10.1007/s12020-012-9794-9.
Eto, Y. et al. (2000) ‘Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training’, Circulation, 101(18), pp. 2134–2137. Available at: https://doi.org/10.1161/01.CIR.101.18.2134.
Fernandes, T. et al. (2015) ‘Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs’, American Journal of Physiology-Heart and Circulatory Physiology, 309(4), pp. H543–H552. Available at: https://doi.org/10.1152/ajpheart.00899.2014.
Hambrecht, R. et al. (2003) ‘Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase’, Circulation, 107(25), pp. 3152–3158. Available at: https://doi.org/10.1161/01.CIR.0000074229.93804.5C.
Haram, P.M. et al. (2006) ‘Time-course of endothelial adaptation following acute and regular exercise’, European Journal of Cardiovascular Prevention & Rehabilitation, 13(4), pp. 585–591. Available at: https://doi.org/10.1097/01.hjr.0000198920.57685.76.
Haram, P.M., Kemi, O.J. and Wisloff, U. (1AD) ‘Adaptation of endothelium to exercise training: Insights from experimental studies’, 13, pp. 336–346. Available at: https://www.bioscience.org/2008/v13/af/2683/fulltext.htm.
Hawley, J.A. et al. (2014) ‘Integrative Biology of Exercise’, Cell, 159(4), pp. 738–749. Available at: https://doi.org/10.1016/j.cell.2014.10.029.
Hill, M., Wernig, A. and Goldspink, G. (2003) ‘Muscle satellite (stem) cell activation during local tissue injury and repair’, Journal of Anatomy, 203(1), pp. 89–99. Available at: https://doi.org/10.1046/j.1469-7580.2003.00195.x.
Hsu, C.-P. et al. (2008) ‘Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair’, The Annals of Thoracic Surgery, 86(4), pp. 1243–1249. Available at: https://doi.org/10.1016/j.athoracsur.2008.06.043.
Iemitsu, M. et al. (2005) ‘Gene expression profiling of exercise-induced cardiac hypertrophy in rats’, Acta Physiologica Scandinavica, 185(4), pp. 259–270. Available at: https://doi.org/10.1111/j.1365-201X.2005.01494.x.
Iemitsu, M. et al. (2006) ‘Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise’, Journal of Applied Physiology, 101(1), pp. 151–163. Available at: https://doi.org/10.1152/japplphysiol.00392.2005.
Jørgensen, S.B., Richter, E.A. and Wojtaszewski, J.F.P. (2006) ‘Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise’, The Journal of Physiology, 574(1), pp. 17–31. Available at: https://doi.org/10.1113/jphysiol.2006.109942.
KEMI, O. et al. (2005) ‘Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function’, Cardiovascular Research, 67(1), pp. 161–172. Available at: https://doi.org/10.1016/j.cardiores.2005.03.010.
KEMI, O. et al. (2007) ‘Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan’, Cardiovascular Research, 76(1), pp. 91–99. Available at: https://doi.org/10.1016/j.cardiores.2007.06.008.
Kemi, O.J. et al. (2004) ‘Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining’, Circulation, 109(23), pp. 2897–2904. Available at: https://doi.org/10.1161/01.CIR.0000129308.04757.72.
Kemi, O.J. et al. (2007) ‘Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban’, Journal of Molecular and Cellular Cardiology, 43(3), pp. 354–361. Available at: https://doi.org/10.1016/j.yjmcc.2007.06.013.
Kemi, O.J. et al. (2008) ‘Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy’, Journal of Cellular Physiology, 214(2), pp. 316–321. Available at: https://doi.org/10.1002/jcp.21197.
Kemi, O.J. et al. (2012) ‘Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats’, Journal of Cellular Physiology, 227(1), pp. 20–26. Available at: https://doi.org/10.1002/jcp.22771.
Kemi, O.J. and Wisløff, U. (2010) ‘Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium’, Acta Physiologica, 199(4), pp. 425–439. Available at: https://doi.org/10.1111/j.1748-1716.2010.02132.x.
Kiens, B. and Richter, E.A. (1998) ‘Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans’, American Journal of Physiology-Endocrinology and Metabolism, 275(2), pp. E332–E337. Available at: https://doi.org/10.1152/ajpendo.1998.275.2.E332.
Kong, S.W. et al. (2005) ‘Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats’, Physiological Genomics, 21(1), pp. 34–42. Available at: https://doi.org/10.1152/physiolgenomics.00226.2004.
KOVANEN, V., SUOMINEN, H. and HEIKKINEN, E. (1980) ‘Connective tissue of "fast” and "slow” skeletal muscle in rats…effects of endurance training’, Acta Physiologica Scandinavica, 108(2), pp. 173–180. Available at: https://doi.org/10.1111/j.1748-1716.1980.tb06515.x.
Levine, B.D. (2008) : ‘what do we know, and what do we still need to know?’, The Journal of Physiology, 586(1), pp. 25–34. Available at: https://doi.org/10.1113/jphysiol.2007.147629.
Linke, A., Erbs, S. and Hambrecht, R. (1AD) ‘Effects of exercise training upon endothelial function in patients with cardiovascular disease’, 13, pp. 424–432. Available at: https://www.bioscience.org/2008/v13/af/2689/fulltext.htm.
Lundby, C., Montero, D. and Joyner, M. (2017) ‘Biology of VO                              max: looking under the physiology lamp’, Acta Physiologica, 220(2), pp. 218–228. Available at: https://doi.org/10.1111/apha.12827.
Magnavita, N., Teofili, L. and Leone, G. (no date) ‘Hodgkin’s lymphoma in a cyclist treated with growth hormone’, 52(1), pp. 65–66. Available at: https://doi.org/10.1002/(SICI)1096-8652(199605)52:1<65::AID-AJH16>3.0.CO;2-6.
Maillet, M., van Berlo, J.H. and Molkentin, J.D. (2013) ‘Molecular basis of physiological heart growth: fundamental concepts and new players’, Nature Reviews Molecular Cell Biology, 14(1), pp. 38–48. Available at: https://doi.org/10.1038/nrm3495.
Meeusen, R. et al. (2004) ‘Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status’, European Journal of Applied Physiology, 91(2–3), pp. 140–146. Available at: https://doi.org/10.1007/s00421-003-0940-1.
Miyachi, M. et al. (1998) ‘Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans’, Acta Physiologica Scandinavica, 163(1), pp. 13–16. Available at: https://doi.org/10.1046/j.1365-201x.1998.0337f.x.
MURPHY, G. and NAGASE, H. (2008) ‘Progress in matrix metalloproteinase research’, Molecular Aspects of Medicine, 29(5), pp. 290–308. Available at: https://doi.org/10.1016/j.mam.2008.05.002.
Ramey, D.W. (1999) How to Read a Scientific Paper. AAEP PROCEEDINGS, pp. 280–284. Available at: https://pdfs.semanticscholar.org/104b/3127547393d6b94a8641100e9c297d653f56.pdf.
Reid, M.B. (2005) ‘Response of the ubiquitin-proteasome pathway to changes in muscle activity’, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(6), pp. R1423–R1431. Available at: https://doi.org/10.1152/ajpregu.00545.2004.
Richardson, R. (no date) ‘What governs skeletal muscle VO2max? New evidence.’, 32(1), pp. 100–107. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10647536.
Rowe, G.C., Safdar, A. and Arany, Z. (2014) ‘Running Forward’, Circulation, 129(7), pp. 798–810. Available at: https://doi.org/10.1161/CIRCULATIONAHA.113.001590.
Shephard, R.J. (2009) ‘Is it Time to Retire the “Central Governor”?’, Sports Medicine, 39(9), pp. 709–721. Available at: https://doi.org/10.2165/11315130-000000000-00000.
Sonksen, P., Holt, R. and Erotokritou-Mulligan, I. (2011) ‘Growth hormone doping: a review’, Open Access Journal of Sports Medicine [Preprint]. Available at: https://doi.org/10.2147/OAJSM.S11626.
Spence, A.L. et al. (2013) ‘A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans’, The Journal of Physiology, 591(5), pp. 1265–1275. Available at: https://doi.org/10.1113/jphysiol.2012.247387.
TENTORI, L. and GRAZIANI, G. (2007) ‘Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk?’, Pharmacological Research, 55(5), pp. 359–369. Available at: https://doi.org/10.1016/j.phrs.2007.01.020.
Tsintzas, O.K. et al. (1996) ‘Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men’, Journal of Applied Physiology, 81(2), pp. 801–809. Available at: https://doi.org/10.1152/jappl.1996.81.2.801.
Walter, G. et al. (1997) ‘Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles’, American Journal of Physiology-Cell Physiology, 272(2), pp. C525–C534. Available at: https://doi.org/10.1152/ajpcell.1997.272.2.C525.
Wilkins, B.J. et al. (2004) ‘Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy’, Circulation Research, 94(1), pp. 110–118. Available at: https://doi.org/10.1161/01.RES.0000109415.17511.18.
Williams, P.E. and Goldspink, G. (no date) ‘Connective tissue changes in immobilised muscle’, 138(2), pp. 343–350. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1164074/.
Wisløff, U. (2002) ‘Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction’, Cardiovascular Research, 54(1), pp. 162–174. Available at: https://doi.org/10.1016/S0008-6363(01)00565-X.
Wisløff, U. et al. (2007) ‘Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients’, Circulation, 115(24), pp. 3086–3094. Available at: https://doi.org/10.1161/CIRCULATIONAHA.106.675041.