[1]
Barasa, M. et al. 2008. Foot-and-Mouth Disease Vaccination in South Sudan: Benefit-Cost Analysis and Livelihoods Impact. Transboundary and Emerging Diseases. 55, 8 (Oct. 2008), 339–351. DOI:https://doi.org/10.1111/j.1865-1682.2008.01042.x.
[2]
Bartlett, M.S. 1957. Measles Periodicity and Community Size. Journal of the Royal Statistical Society. Series A (General). 120, 1 (1957). DOI:https://doi.org/10.2307/2342553.
[3]
Bean, A.G.D. et al. 2013. Studying immunity to zoonotic diseases in the natural host — keeping it real. Nature Reviews Immunology. 13, 12 (Dec. 2013), 851–861. DOI:https://doi.org/10.1038/nri3551.
[4]
Bedelian, C. et al. 2007. Maasai perception of the impact and incidence of malignant catarrhal fever (MCF) in southern Kenya. Preventive Veterinary Medicine. 78, 3–4 (Mar. 2007), 296–316. DOI:https://doi.org/10.1016/j.prevetmed.2006.10.012.
[5]
Bermejo, M. et al. 2006. Ebola Outbreak Killed 5000 Gorillas. Science. 314, 5805 (Dec. 2006), 1564–1564. DOI:https://doi.org/10.1126/science.1133105.
[6]
Casey, M.B. et al. 2014. Patterns of Foot-and-Mouth Disease Virus Distribution in Africa. The Role of Animals in Emerging Viral Diseases. Elsevier. 21–38.
[7]
Casey-Bryars, M. et al. 2018. Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology & Evolution. 2, 9 (Sep. 2018), 1449–1457. DOI:https://doi.org/10.1038/s41559-018-0636-x.
[8]
Catley, A. et al. 2004. Participatory diagnosis of a heat-intolerance syndrome in cattle in Tanzania and association with foot-and-mouth disease. Preventive Veterinary Medicine. 65, 1–2 (Aug. 2004), 17–30. DOI:https://doi.org/10.1016/j.prevetmed.2004.06.007.
[9]
Chan, E.H. et al. 2010. Global capacity for emerging infectious disease detection. Proceedings of the National Academy of Sciences. 107, 50 (Dec. 2010), 21701–21706. DOI:https://doi.org/10.1073/pnas.1006219107.
[10]
Cleaveland, S. et al. 2001. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 356, 1411 (Jul. 2001), 991–999. DOI:https://doi.org/10.1098/rstb.2001.0889.
[11]
Cleaveland, S. et al. 2006. Dogs can play useful role as sentinel hosts for disease. Nature. 440, 7084 (Mar. 2006), 605–605. DOI:https://doi.org/10.1038/440605b.
[12]
CLEAVELAND, S. et al. 2007. The Conservation Relevance of Epidemiological Research into Carnivore Viral Diseases in the Serengeti. Conservation Biology. 21, 3 (Jun. 2007), 612–622. DOI:https://doi.org/10.1111/j.1523-1739.2007.00701.x.
[13]
Cleaveland, S. and Dye, C. 1995. Maintenance of a microparasite infecting several host species: rabies in the Serengeti. Parasitology. 111, S1 (Jan. 1995). DOI:https://doi.org/10.1017/S0031182000075806.
[14]
Cohen, M.L. 2000. Changing patterns of infectious disease. Nature. 406, 6797 (Aug. 2000), 762–767. DOI:https://doi.org/10.1038/35021206.
[15]
Craft, M.E. et al. 2009. Distinguishing epidemic waves from disease spillover in a wildlife population. Proceedings of the Royal Society B: Biological Sciences. 276, 1663 (May 2009), 1777–1785. DOI:https://doi.org/10.1098/rspb.2008.1636.
[16]
Delahay, R.J. et al. 2009. Management of disease in wild mammals. Springer.
[17]
Dhikusooka, M.T. et al. 2015. Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda. Emerging Infectious Diseases. 21, 1 (Jan. 2015), 111–114. DOI:https://doi.org/10.3201/eid2101.140995.
[18]
Dietzgen, R.G. and Kuzmin, I.V. eds. 2012. Rhabdoviruses: molecular taxonomy, evolution, genomics, ecology, host-vector interactions, cytopathology and control. Caister Academic Press.
[19]
Donnelly, C.A. et al. 2006. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature. 439, 7078 (Feb. 2006), 843–846. DOI:https://doi.org/10.1038/nature04454.
[20]
Engering, A. et al. 2013. Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections. 2, 1 (Jan. 2013), 1–7. DOI:https://doi.org/10.1038/emi.2013.5.
[21]
Fenton, A. and Pedersen, A.B. 2005. Community Epidemiology Framework for Classifying Disease Threats. Emerging Infectious Diseases. 11, 12 (Dec. 2005), 1815–1821. DOI:https://doi.org/10.3201/eid1112.050306.
[22]
Ferguson, K.J. et al. 2013. Evaluating the Potential for the Environmentally Sustainable Control of Foot and Mouth Disease in Sub-Saharan Africa. EcoHealth. 10, 3 (Sep. 2013), 314–322. DOI:https://doi.org/10.1007/s10393-013-0850-6.
[23]
Ferrari, M.J. et al. 2008. The dynamics of measles in sub-Saharan Africa. Nature. 451, 7179 (Feb. 2008), 679–684. DOI:https://doi.org/10.1038/nature06509.
[24]
Fisher, M.C. et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature. 484, 7393 (Apr. 2012), 186–194. DOI:https://doi.org/10.1038/nature10947.
[25]
Forde, T. et al. A high-morbidity outbreak of Johne’s disease in game-ranched elk. 56, 5, 479–483.
[26]
Gómez, A. and Nichols, E. 2013. Neglected wild life: Parasitic biodiversity as a conservation target. International Journal for Parasitology: Parasites and Wildlife. 2, (Dec. 2013), 222–227. DOI:https://doi.org/10.1016/j.ijppaw.2013.07.002.
[27]
Gompper, M.E. ed. 2014. Free-ranging dogs and wildlife conservation. Oxford University Press.
[28]
Halliday, J. et al. 2012. Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution. Philosophical Transactions of the Royal Society B: Biological Sciences. 367, 1604 (Oct. 2012), 2872–2880. DOI:https://doi.org/10.1098/rstb.2011.0362.
[29]
Halliday, J.E.B. et al. 2007. A framework for evaluating animals as sentinels for infectious disease surveillance. Journal of The Royal Society Interface. 4, 16 (Oct. 2007), 973–984. DOI:https://doi.org/10.1098/rsif.2007.0237.
[30]
Hampson, K. et al. 2015. Estimating the Global Burden of Endemic Canine Rabies. PLOS Neglected Tropical Diseases. 9, 4 (Apr. 2015). DOI:https://doi.org/10.1371/journal.pntd.0003709.
[31]
Hampson, K. et al. 2011. Predictability of anthrax infection in the Serengeti, Tanzania. Journal of Applied Ecology. 48, 6 (Dec. 2011), 1333–1344. DOI:https://doi.org/10.1111/j.1365-2664.2011.02030.x.
[32]
Hampson, K. et al. 2008. Rabies Exposures, Post-Exposure Prophylaxis and Deaths in a Region of Endemic Canine Rabies. PLoS Neglected Tropical Diseases. 2, 11 (Nov. 2008). DOI:https://doi.org/10.1371/journal.pntd.0000339.
[33]
Hampson, K. et al. 2009. Transmission Dynamics and Prospects for the Elimination of Canine Rabies. PLoS Biology. 7, 3 (Mar. 2009). DOI:https://doi.org/10.1371/journal.pbio.1000053.
[34]
Haydon, D.T. et al. 2006. Low-coverage vaccination strategies for the conservation of endangered species. Nature. 443, 7112 (Oct. 2006), 692–695. DOI:https://doi.org/10.1038/nature05177.
[35]
Hoenen, T. et al. 2016. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases. 22, 2 (Feb. 2016). DOI:https://doi.org/10.3201/eid2202.151796.
[36]
Jackson, A.C. and Wunner, W.H. eds. 2002. Rabies. Academic Press.
[37]
James, T.Y. et al. 2015. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution. 5, 18 (Sep. 2015), 4079–4097. DOI:https://doi.org/10.1002/ece3.1672.
[38]
Jones, K.E. et al. 2008. Global trends in emerging infectious diseases. Nature. 451, 7181 (Feb. 2008), 990–993. DOI:https://doi.org/10.1038/nature06536.
[39]
JORI, F. et al. 2009. A qualitative risk assessment of factors contributing to foot and mouth disease outbreaks in cattle along the western boundary of the Kruger National Park. Revue Scientifique et Technique de l’OIE. 28, 3 (Dec. 2009), 917–931. DOI:https://doi.org/10.20506/rst.28.3.1932.
[40]
Kaner, J. and Schaack, S. 2016. Understanding Ebola: the 2014 epidemic. Globalization and Health. 12, 1 (Dec. 2016). DOI:https://doi.org/10.1186/s12992-016-0194-4.
[41]
Keeling, M.J. and Gilligan, C.A. 2000. Bubonic plague: a metapopulation model of a zoonosis. Proceedings of the Royal Society of London. Series B: Biological Sciences. 267, 1458 (Nov. 2000), 2219–2230. DOI:https://doi.org/10.1098/rspb.2000.1272.
[42]
Keeling, M.J. and Gilligan, C.A. 2000. Metapopulation dynamics of bubonic plague. Nature. 407, 6806 (Oct. 2000), 903–906. DOI:https://doi.org/10.1038/35038073.
[43]
Klepac, P. et al. 2015. Six challenges in the eradication of infectious diseases. Epidemics. 10, (Mar. 2015), 97–101. DOI:https://doi.org/10.1016/j.epidem.2014.12.001.
[44]
Klepac, P. et al. 2013. Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases. Philosophical Transactions of the Royal Society B: Biological Sciences. 368, 1623 (Jun. 2013), 20120137–20120137. DOI:https://doi.org/10.1098/rstb.2012.0137.
[45]
Knobel, D.L. et al. 2013. Dog Rabies and Its Control. Rabies. Elsevier. 591–615.
[46]
Knobel, D.L. et al. 2013. Dogs, disease, and wildlife. Free-Ranging Dogs and Wildlife Conservation. M.E. Gompper, ed. Oxford University Press. 144–169.
[47]
Kuiken, T. et al. 2006. Host Species Barriers to Influenza Virus Infections. Science. 312, 5772 (Apr. 2006), 394–397. DOI:https://doi.org/10.1126/science.1122818.
[48]
Leendertz, S.A.J. et al. 2017. Ebola in great apes - current knowledge, possibilities for vaccination, and implications for conservation and human health. Mammal Review. 47, 2 (Apr. 2017), 98–111. DOI:https://doi.org/10.1111/mam.12082.
[49]
Lembo, T. et al. 2008. Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. Journal of Applied Ecology. 45, 4 (Aug. 2008), 1246–1257. DOI:https://doi.org/10.1111/j.1365-2664.2008.01468.x.
[50]
Lembo, T. et al. 2011. Serologic Surveillance of Anthrax in the Serengeti Ecosystem, Tanzania, 1996–2009. Emerging Infectious Diseases. 17, 3 (Mar. 2011), 387–394. DOI:https://doi.org/10.3201/eid1703.101290.
[51]
Lembo, T. et al. 2010. The Feasibility of Canine Rabies Elimination in Africa: Dispelling Doubts with Data. PLoS Neglected Tropical Diseases. 4, 2 (Feb. 2010). DOI:https://doi.org/10.1371/journal.pntd.0000626.
[52]
Lindh, J.M. et al. 2012. Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes. PLoS Neglected Tropical Diseases. 6, 5 (May 2012). DOI:https://doi.org/10.1371/journal.pntd.0001661.
[53]
M. S. Bartlett 1960. Stochastic Population Models in Ecology and Epidemology. Methuen.
[54]
Marsden, C.D. et al. 2012. Inferring the ancestry of African wild dogs that returned to the Serengeti-Mara. Conservation Genetics. 13, 2 (Apr. 2012), 525–533. DOI:https://doi.org/10.1007/s10592-011-0304-z.
[55]
Miguel, E. et al. 2017. Drivers of foot-and-mouth disease in cattle at wild/domestic interface: Insights from farmers, buffalo and lions. Diversity and Distributions. 23, 9 (Sep. 2017), 1018–1030. DOI:https://doi.org/10.1111/ddi.12585.
[56]
Morse, S.S. et al. 2012. Prediction and prevention of the next pandemic zoonosis. The Lancet. 380, 9857 (Dec. 2012), 1956–1965. DOI:https://doi.org/10.1016/S0140-6736(12)61684-5.
[57]
Morters, M.K. et al. 2013. Evidence-based control of canine rabies: a critical review of population density reduction. Journal of Animal Ecology. 82, 1 (Jan. 2013), 6–14. DOI:https://doi.org/10.1111/j.1365-2656.2012.02033.x.
[58]
Mtema, Z. et al. 2016. Mobile Phones As Surveillance Tools: Implementing and Evaluating a Large-Scale Intersectoral Surveillance System for Rabies in Tanzania. PLOS Medicine. 13, 4 (Apr. 2016). DOI:https://doi.org/10.1371/journal.pmed.1002002.
[59]
Nouvellet, P. et al. 2015. The role of rapid diagnostics in managing Ebola epidemics. Nature. 528, 7580 (Dec. 2015), S109–S116. DOI:https://doi.org/10.1038/nature16041.
[60]
Nunes, C.M. et al. 2008. Dog culling and replacement in an area endemic for visceral leishmaniasis in Brazil. Veterinary Parasitology. 153, 1–2 (May 2008), 19–23. DOI:https://doi.org/10.1016/j.vetpar.2008.01.005.
[61]
Ohaga, S.O. et al. 2007. Livestock farmers’ perception and epidemiology of bovine trypanosomosis in Kwale District, Kenya. Preventive Veterinary Medicine. 80, 1 (Jun. 2007), 24–33. DOI:https://doi.org/10.1016/j.prevetmed.2007.01.007.
[62]
Onono, J.O. et al. 2013. Constraints to cattle production in a semiarid pastoral system in Kenya. Tropical Animal Health and Production. 45, 6 (Aug. 2013), 1415–1422. DOI:https://doi.org/10.1007/s11250-013-0379-2.
[63]
Parida, S. 2009. Vaccination against foot-and-mouth disease virus: strategies and effectiveness. Expert Review of Vaccines. 8, 3 (Mar. 2009), 347–365. DOI:https://doi.org/10.1586/14760584.8.3.347.
[64]
Perry, B. et al. The dynamics and impact of foot and mouth disease in smallholder farming systems in South-East Asia: a case study in Laos. 21, 663–673.
[65]
Pettorelli, N. et al. 2010. Carnivore biodiversity in Tanzania: revealing the distribution patterns of secretive mammals using camera traps. Animal Conservation. 13, 2 (Apr. 2010), 131–139. DOI:https://doi.org/10.1111/j.1469-1795.2009.00309.x.
[66]
Pruvot, M. et al. 2016. Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk. PLOS ONE. 11, 7 (Jul. 2016). DOI:https://doi.org/10.1371/journal.pone.0159319.
[67]
Pruvot, M. et al. 2014. Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter? Veterinary Research. 45, 1 (2014). DOI:https://doi.org/10.1186/1297-9716-45-18.
[68]
Pruvot, M. et al. 2013. The modification and evaluation of an ELISA test for the surveillance of Mycobacterium avium subsp. paratuberculosis infection in wild ruminants. BMC Veterinary Research. 9, 1 (2013). DOI:https://doi.org/10.1186/1746-6148-9-5.
[69]
Radolf, J.D. et al. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature Reviews Microbiology. 10, 2 (Feb. 2012), 87–99. DOI:https://doi.org/10.1038/nrmicro2714.
[70]
Rizzoli, A. et al. 2014. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Frontiers in Public Health. 2, (Dec. 2014). DOI:https://doi.org/10.3389/fpubh.2014.00251.
[71]
Rufael, T. et al. 2008. Foot and mouth disease in the Borana pastoral system, southern Ethiopia and implications for livelihoods and international trade. Tropical Animal Health and Production. 40, 1 (Jan. 2008), 29–38. DOI:https://doi.org/10.1007/s11250-007-9049-6.
[72]
Rweyemamu, M. et al. 2014. Challenges and prospects for the control of foot-and-mouth disease: an African perspective. Veterinary Medicine: Research and Reports. (Oct. 2014). DOI:https://doi.org/10.2147/VMRR.S62607.
[73]
Schmid, B.V. et al. 2015. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proceedings of the National Academy of Sciences. 112, 10 (Mar. 2015), 3020–3025. DOI:https://doi.org/10.1073/pnas.1412887112.
[74]
Sharp, P.M. and Hahn, B.H. 2011. Origins of HIV and the AIDS Pandemic. Cold Spring Harbor Perspectives in Medicine. 1, 1 (Sep. 2011), a006841–a006841. DOI:https://doi.org/10.1101/cshperspect.a006841.
[75]
Sinclair, A.R.E. et al. eds. 2015. Serengeti IV: sustaining biodiversity in a coupled human-natural system. The University of Chicago Press.
[76]
Smith, K.F. et al. 2009. The role of infectious diseases in biological conservation. Animal Conservation. 12, 1 (Feb. 2009), 1–12. DOI:https://doi.org/10.1111/j.1469-1795.2008.00228.x.
[77]
Stenseth, N.C. et al. 2008. Plague: Past, Present, and Future. PLoS Medicine. 5, 1 (Jan. 2008). DOI:https://doi.org/10.1371/journal.pmed.0050003.
[78]
Stephen, C. 2014. TOWARD A MODERNIZED DEFINITION OF WILDLIFE HEALTH. Journal of Wildlife Diseases. 50, 3 (Jul. 2014), 427–430. DOI:https://doi.org/10.7589/2013-11-305.
[79]
Taylor, L.H. et al. 2001. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 356, 1411 (Jul. 2001), 983–989. DOI:https://doi.org/10.1098/rstb.2001.0888.
[80]
Thomson, G.R. et al. 2003. Foot and mouth disease in wildlife. Virus Research. 91, 1 (Jan. 2003), 145–161. DOI:https://doi.org/10.1016/S0168-1702(02)00263-0.
[81]
Townsend, S.E. et al. 2013. Designing Programs for Eliminating Canine Rabies from Islands: Bali, Indonesia as a Case Study. PLoS Neglected Tropical Diseases. 7, 8 (Aug. 2013). DOI:https://doi.org/10.1371/journal.pntd.0002372.
[82]
Townsend, S.E. et al. 2013. Surveillance guidelines for disease elimination: A case study of canine rabies. Comparative Immunology, Microbiology and Infectious Diseases. 36, 3 (May 2013), 249–261. DOI:https://doi.org/10.1016/j.cimid.2012.10.008.
[83]
Viana, M. et al. 2014. Assembling evidence for identifying reservoirs of infection. Trends in Ecology & Evolution. 29, 5 (May 2014), 270–279. DOI:https://doi.org/10.1016/j.tree.2014.03.002.
[84]
Viana, M. et al. 2015. Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proceedings of the National Academy of Sciences. 112, 5 (Feb. 2015), 1464–1469. DOI:https://doi.org/10.1073/pnas.1411623112.
[85]
Vigilato, M.A.N. et al. 2013. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philosophical Transactions of the Royal Society B: Biological Sciences. 368, 1623 (Jun. 2013), 20120143–20120143. DOI:https://doi.org/10.1098/rstb.2012.0143.
[86]
Vosloo, W. et al. 2002. Review of the status of foot and mouth disease in sub-Saharan Africa. 21, 3 (2002), 437–449.
[87]
Webster, J.P. et al. 2017. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Philosophical Transactions of the Royal Society B: Biological Sciences. 372, 1719 (May 2017). DOI:https://doi.org/10.1098/rstb.2016.0091.
[88]
Webster, J.P. et al. 2017. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Philosophical Transactions of the Royal Society B: Biological Sciences. 372, 1719 (May 2017). DOI:https://doi.org/10.1098/rstb.2016.0091.
[89]
Whitman, K. et al. 2004. Sustainable trophy hunting of African lions. Nature. 428, 6979 (Mar. 2004), 175–178. DOI:https://doi.org/10.1038/nature02395.
[90]
Wimsatt, J. and Biggins, D.E. A review of plague persistence with special emphasis on fleas. 46, 85–99.
[91]
Woolhouse, M.E.J. et al. 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution. 20, 5 (May 2005), 238–244. DOI:https://doi.org/10.1016/j.tree.2005.02.009.
[92]
Woolhouse, M.E.J. and Dye, C. 2001. Preface. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 356, 1411 (Jul. 2001), 981–982. DOI:https://doi.org/10.1098/rstb.2001.0899.
[93]
Woolhouse, M.E.J. and Gowtage-Sequeria, S. 2005. Host Range and Emerging and Reemerging Pathogens. Emerging Infectious Diseases. 11, 12 (Dec. 2005), 1842–1847. DOI:https://doi.org/10.3201/eid1112.050997.
[94]
World Health Organization 2008. Anthrax in humans and animals. World Health Organization.
[95]
Yabsley, M.J. and Shock, B.C. 2013. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. International Journal for Parasitology: Parasites and Wildlife. 2, (Dec. 2013), 18–31. DOI:https://doi.org/10.1016/j.ijppaw.2012.11.003.
[96]
Zeppelini, C.G. et al. 2016. Zoonoses As Ecological Entities: A Case Review of Plague. PLOS Neglected Tropical Diseases. 10, 10 (Oct. 2016). DOI:https://doi.org/10.1371/journal.pntd.0004949.
[97]
Conservation and Development Interventions at the wildlife/livestock interface. World Conservation Union.
[98]
2011. Foresight. The Future of Food and Farming (2011) Final Project Report. The Government Office for Science, London.
[99]
2002. Identifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerging Infectious Diseases. 8, 12 (Dec. 2002), 1468–1473. DOI:https://doi.org/10.3201/eid0812.010317.
[100]
2002. Molecular biology of the cell. Garland Science.