[1]
M. Bermejo, J. D. Rodriguez-Teijeiro, G. Illera, A. Barroso, C. Vila, and P. D. Walsh, ‘Ebola Outbreak Killed 5000 Gorillas’, Science, vol. 314, no. 5805, pp. 1564–1564, Dec. 2006, doi: 10.1126/science.1133105.
[2]
A. Gómez and E. Nichols, ‘Neglected wild life: Parasitic biodiversity as a conservation target’, International Journal for Parasitology: Parasites and Wildlife, vol. 2, pp. 222–227, Dec. 2013, doi: 10.1016/j.ijppaw.2013.07.002.
[3]
J. Kaner and S. Schaack, ‘Understanding Ebola: the 2014 epidemic’, Globalization and Health, vol. 12, no. 1, Dec. 2016, doi: 10.1186/s12992-016-0194-4.
[4]
M. Pruvot, S. Kutz, F. van der Meer, M. Musiani, H. W. Barkema, and K. Orsel, ‘Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter?’, Veterinary Research, vol. 45, no. 1, 2014, doi: 10.1186/1297-9716-45-18.
[5]
M. J. Yabsley and B. C. Shock, ‘Natural history of Zoonotic Babesia: Role of wildlife reservoirs’, International Journal for Parasitology: Parasites and Wildlife, vol. 2, pp. 18–31, Dec. 2013, doi: 10.1016/j.ijppaw.2012.11.003.
[6]
M. C. Fisher et al., ‘Emerging fungal threats to animal, plant and ecosystem health’, Nature, vol. 484, no. 7393, pp. 186–194, Apr. 2012, doi: 10.1038/nature10947.
[7]
M. Pruvot et al., ‘Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk’, PLOS ONE, vol. 11, no. 7, Jul. 2016, doi: 10.1371/journal.pone.0159319.
[8]
K. F. Smith, K. Acevedo-Whitehouse, and A. B. Pedersen, ‘The role of infectious diseases in biological conservation’, Animal Conservation, vol. 12, no. 1, pp. 1–12, Feb. 2009, doi: 10.1111/j.1469-1795.2008.00228.x.
[9]
C. Stephen, ‘TOWARD A MODERNIZED DEFINITION OF WILDLIFE HEALTH’, Journal of Wildlife Diseases, vol. 50, no. 3, pp. 427–430, Jul. 2014, doi: 10.7589/2013-11-305.
[10]
J. D. Radolf, M. J. Caimano, B. Stevenson, and L. T. Hu, ‘Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes’, Nature Reviews Microbiology, vol. 10, no. 2, pp. 87–99, Feb. 2012, doi: 10.1038/nrmicro2714.
[11]
Molecular biology of the cell. New York: Garland Science, 2002 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK26917/
[12]
L. H. Taylor, S. M. Latham, and M. E. J. woolhouse, ‘Risk factors for human disease emergence’, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 356, no. 1411, pp. 983–989, Jul. 2001, doi: 10.1098/rstb.2001.0888.
[13]
S. Cleaveland, M. K. Laurenson, and L. H. Taylor, ‘Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence’, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 356, no. 1411, pp. 991–999, Jul. 2001, doi: 10.1098/rstb.2001.0889.
[14]
M. E. J. Woolhouse and S. Gowtage-Sequeria, ‘Host Range and Emerging and Reemerging Pathogens’, Emerging Infectious Diseases, vol. 11, no. 12, pp. 1842–1847, Dec. 2005, doi: 10.3201/eid1112.050997.
[15]
J. P. Webster, A. Borlase, and J. W. Rudge, ‘Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the “elimination” era’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1719, May 2017, doi: 10.1098/rstb.2016.0091.
[16]
J. P. Webster, A. Borlase, and J. W. Rudge, ‘Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the “elimination” era’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1719, May 2017, doi: 10.1098/rstb.2016.0091.
[17]
B. Perry, L. Gleeson, S. Khounsey, P. Bounma, and S. Blacksell, ‘The dynamics and impact of foot and mouth disease in smallholder farming systems in South-East Asia: a case study in Laos.’, no. 21, pp. 663–673 [Online]. Available: https://www.semanticscholar.org/paper/The-dynamics-and-impact-of-foot-and-mouth-disease-a-Perry-Gleeson/534bf0ca3614529fa02bc24fd0bc9d19242bc2dc
[18]
S. O. Ohaga, E. D. Kokwaro, I. O. Ndiege, A. Hassanali, and R. K. Saini, ‘Livestock farmers’ perception and epidemiology of bovine trypanosomosis in Kwale District, Kenya’, Preventive Veterinary Medicine, vol. 80, no. 1, pp. 24–33, Jun. 2007, doi: 10.1016/j.prevetmed.2007.01.007.
[19]
C. Bedelian, D. Nkedianye, and M. Herrero, ‘Maasai perception of the impact and incidence of malignant catarrhal fever (MCF) in southern Kenya’, Preventive Veterinary Medicine, vol. 78, no. 3–4, pp. 296–316, Mar. 2007, doi: 10.1016/j.prevetmed.2006.10.012.
[20]
J. O. Onono, B. Wieland, and J. Rushton, ‘Constraints to cattle production in a semiarid pastoral system in Kenya’, Tropical Animal Health and Production, vol. 45, no. 6, pp. 1415–1422, Aug. 2013, doi: 10.1007/s11250-013-0379-2.
[21]
A. Catley et al., ‘Participatory diagnosis of a heat-intolerance syndrome in cattle in Tanzania and association with foot-and-mouth disease’, Preventive Veterinary Medicine, vol. 65, no. 1–2, pp. 17–30, Aug. 2004, doi: 10.1016/j.prevetmed.2004.06.007.
[22]
M. Barasa et al., ‘Foot-and-Mouth Disease Vaccination in South Sudan: Benefit-Cost Analysis and Livelihoods Impact’, Transboundary and Emerging Diseases, vol. 55, no. 8, pp. 339–351, Oct. 2008, doi: 10.1111/j.1865-1682.2008.01042.x.
[23]
T. Rufael, A. Catley, A. Bogale, M. Sahle, and Y. Shiferaw, ‘Foot and mouth disease in the Borana pastoral system, southern Ethiopia and implications for livelihoods and international trade’, Tropical Animal Health and Production, vol. 40, no. 1, pp. 29–38, Jan. 2008, doi: 10.1007/s11250-007-9049-6.
[24]
W. Vosloo, A. Bastos, O. Sangare, and S. Hargreaves, ‘Review of the status of foot and mouth disease in sub-Saharan Africa’, vol. 21, no. 3, pp. 437–449, 2002 [Online]. Available: https://www.researchgate.net/publication/10953905_Review_of_the_status_of_foot_and_mouth_disease_in_sub-Saharan_Africa
[25]
G. R. Thomson, W. Vosloo, and A. D. S. Bastos, ‘Foot and mouth disease in wildlife’, Virus Research, vol. 91, no. 1, pp. 145–161, Jan. 2003, doi: 10.1016/S0168-1702(02)00263-0.
[26]
F. JORI, W. VOSLOO, B. J. A. DU PLESSIS, D. BRAHMBHATT, B. GUMMOW, and G. R. THOMSON, ‘A qualitative risk assessment of factors contributing to foot and mouth disease outbreaks in cattle along the western boundary of the Kruger National Park’, Revue Scientifique et Technique de l’OIE, vol. 28, no. 3, pp. 917–931, Dec. 2009, doi: 10.20506/rst.28.3.1932.
[27]
E. Miguel et al., ‘Drivers of foot-and-mouth disease in cattle at wild/domestic interface: Insights from farmers, buffalo and lions’, Diversity and Distributions, vol. 23, no. 9, pp. 1018–1030, Sep. 2017, doi: 10.1111/ddi.12585.
[28]
R. G. Dietzgen and I. V. Kuzmin, Eds., Rhabdoviruses: molecular taxonomy, evolution, genomics, ecology, host-vector interactions, cytopathology and control. Norfolk, UK: Caister Academic Press, 2012 [Online]. Available: https://ebookcentral.proquest.com/lib/gla/detail.action?docID=6109619
[29]
‘Foresight. The Future of Food and Farming (2011) Final Project Report.’ The Government Office for Science, London., 2011 [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/288329/11-546-future-of-food-and-farming-report.pdf
[30]
T. Forde, M. Pruvot, J. De Buck, and K. Orsel, ‘A high-morbidity outbreak of Johne’s disease in game-ranched elk’, vol. 56, no. 5, pp. 479–483 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399733/
[31]
T. Hoenen et al., ‘Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool’, Emerging Infectious Diseases, vol. 22, no. 2, Feb. 2016, doi: 10.3201/eid2202.151796.
[32]
A. R. E. Sinclair, K. L. Metzge, S. A. R. Mduma, and J. M. Fryxell, Eds., Serengeti IV: sustaining biodiversity in a coupled human-natural system. Chicago: The University of Chicago Press, 2015 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://chicago.universitypressscholarship.com/view/10.7208/chicago/9780226196336.001.0001/upso-9780226195834
[33]
E. H. Chan et al., ‘Global capacity for emerging infectious disease detection’, Proceedings of the National Academy of Sciences, vol. 107, no. 50, pp. 21701–21706, Dec. 2010, doi: 10.1073/pnas.1006219107.
[34]
J. Halliday et al., ‘Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1604, pp. 2872–2880, Oct. 2012, doi: 10.1098/rstb.2011.0362.
[35]
T. Y. James et al., ‘Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research’, Ecology and Evolution, vol. 5, no. 18, pp. 4079–4097, Sep. 2015, doi: 10.1002/ece3.1672.
[36]
P. Nouvellet et al., ‘The role of rapid diagnostics in managing Ebola epidemics’, Nature, vol. 528, no. 7580, pp. S109–S116, Dec. 2015, doi: 10.1038/nature16041.
[37]
M. Viana et al., ‘Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions’, Proceedings of the National Academy of Sciences, vol. 112, no. 5, pp. 1464–1469, Feb. 2015, doi: 10.1073/pnas.1411623112.
[38]
M. Pruvot et al., ‘The modification and evaluation of an ELISA test for the surveillance of Mycobacterium avium subsp. paratuberculosis infection in wild ruminants’, BMC Veterinary Research, vol. 9, no. 1, 2013, doi: 10.1186/1746-6148-9-5.
[39]
J. E. B. Halliday, A. L. Meredith, D. L. Knobel, D. J. Shaw, B. M. de C. Bronsvoort, and S. Cleaveland, ‘A framework for evaluating animals as sentinels for infectious disease surveillance’, Journal of The Royal Society Interface, vol. 4, no. 16, pp. 973–984, Oct. 2007, doi: 10.1098/rsif.2007.0237.
[40]
S. Cleaveland, F. X. Meslin, and R. Breiman, ‘Dogs can play useful role as sentinel hosts for disease’, Nature, vol. 440, no. 7084, pp. 605–605, Mar. 2006, doi: 10.1038/440605b.
[41]
T. Lembo et al., ‘Serologic Surveillance of Anthrax in the Serengeti Ecosystem, Tanzania, 1996–2009’, Emerging Infectious Diseases, vol. 17, no. 3, pp. 387–394, Mar. 2011, doi: 10.3201/eid1703.101290.
[42]
Z. Mtema et al., ‘Mobile Phones As Surveillance Tools: Implementing and Evaluating a Large-Scale Intersectoral Surveillance System for Rabies in Tanzania’, PLOS Medicine, vol. 13, no. 4, Apr. 2016, doi: 10.1371/journal.pmed.1002002.
[43]
A. Rizzoli et al., ‘Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health’, Frontiers in Public Health, vol. 2, Dec. 2014, doi: 10.3389/fpubh.2014.00251.
[44]
N. Pettorelli, A. L. Lobora, M. J. Msuha, C. Foley, and S. M. Durant, ‘Carnivore biodiversity in Tanzania: revealing the distribution patterns of secretive mammals using camera traps’, Animal Conservation, vol. 13, no. 2, pp. 131–139, Apr. 2010, doi: 10.1111/j.1469-1795.2009.00309.x.
[45]
K. Whitman, A. M. Starfield, H. S. Quadling, and C. Packer, ‘Sustainable trophy hunting of African lions’, Nature, vol. 428, no. 6979, pp. 175–178, Mar. 2004, doi: 10.1038/nature02395.
[46]
M. E. Craft, E. Volz, C. Packer, and L. A. Meyers, ‘Distinguishing epidemic waves from disease spillover in a wildlife population’, Proceedings of the Royal Society B: Biological Sciences, vol. 276, no. 1663, pp. 1777–1785, May 2009, doi: 10.1098/rspb.2008.1636.
[47]
K. Hampson et al., ‘Predictability of anthrax infection in the Serengeti, Tanzania’, Journal of Applied Ecology, vol. 48, no. 6, pp. 1333–1344, Dec. 2011, doi: 10.1111/j.1365-2664.2011.02030.x.
[48]
J. M. Lindh et al., ‘Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes’, PLoS Neglected Tropical Diseases, vol. 6, no. 5, May 2012, doi: 10.1371/journal.pntd.0001661.
[49]
B. V. Schmid et al., ‘Climate-driven introduction of the Black Death and successive plague reintroductions into Europe’, Proceedings of the National Academy of Sciences, vol. 112, no. 10, pp. 3020–3025, Mar. 2015, doi: 10.1073/pnas.1412887112.
[50]
N. C. Stenseth et al., ‘Plague: Past, Present, and Future’, PLoS Medicine, vol. 5, no. 1, Jan. 2008, doi: 10.1371/journal.pmed.0050003.
[51]
J. Wimsatt and D. E. Biggins, ‘A review of plague persistence with special emphasis on fleas’, vol. 46, pp. 85–99 [Online]. Available: https://doaj.org/article/6305ce51d3684adf9d1054d1ce8a105b
[52]
C. G. Zeppelini, A. M. P. de Almeida, and P. Cordeiro-Estrela, ‘Zoonoses As Ecological Entities: A Case Review of Plague’, PLOS Neglected Tropical Diseases, vol. 10, no. 10, Oct. 2016, doi: 10.1371/journal.pntd.0004949.
[53]
M. L. Cohen, ‘Changing patterns of infectious disease’, Nature, vol. 406, no. 6797, pp. 762–767, Aug. 2000, doi: 10.1038/35021206.
[54]
A. Engering, L. Hogerwerf, and J. Slingenbergh, ‘Pathogen–host–environment interplay and disease emergence’, Emerging Microbes & Infections, vol. 2, no. 1, pp. 1–7, Jan. 2013, doi: 10.1038/emi.2013.5.
[55]
P. M. Sharp and B. H. Hahn, ‘Origins of HIV and the AIDS Pandemic’, Cold Spring Harbor Perspectives in Medicine, vol. 1, no. 1, pp. a006841–a006841, Sep. 2011, doi: 10.1101/cshperspect.a006841.
[56]
M. Viana et al., ‘Assembling evidence for identifying reservoirs of infection’, Trends in Ecology & Evolution, vol. 29, no. 5, pp. 270–279, May 2014, doi: 10.1016/j.tree.2014.03.002.
[57]
‘Identifying Reservoirs of Infection: A Conceptual and Practical Challenge’, Emerging Infectious Diseases, vol. 8, no. 12, pp. 1468–1473, Dec. 2002, doi: 10.3201/eid0812.010317.
[58]
M. J. Ferrari et al., ‘The dynamics of measles in sub-Saharan Africa’, Nature, vol. 451, no. 7179, pp. 679–684, Feb. 2008, doi: 10.1038/nature06509.
[59]
M. J. Keeling and C. A. Gilligan, ‘Metapopulation dynamics of bubonic plague’, Nature, vol. 407, no. 6806, pp. 903–906, Oct. 2000, doi: 10.1038/35038073.
[60]
M. J. Keeling and C. A. Gilligan, ‘Bubonic plague: a metapopulation model of a zoonosis’, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 267, no. 1458, pp. 2219–2230, Nov. 2000, doi: 10.1098/rspb.2000.1272.
[61]
T. Lembo et al., ‘Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem’, Journal of Applied Ecology, vol. 45, no. 4, pp. 1246–1257, Aug. 2008, doi: 10.1111/j.1365-2664.2008.01468.x.
[62]
M. Rweyemamu et al., ‘Challenges and prospects for the control of foot-and-mouth disease: an African perspective’, Veterinary Medicine: Research and Reports, Oct. 2014, doi: 10.2147/VMRR.S62607.
[63]
M. Casey-Bryars et al., ‘Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches’, Nature Ecology & Evolution, vol. 2, no. 9, pp. 1449–1457, Sep. 2018, doi: 10.1038/s41559-018-0636-x.
[64]
M. T. Dhikusooka et al., ‘Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda’, Emerging Infectious Diseases, vol. 21, no. 1, pp. 111–114, Jan. 2015, doi: 10.3201/eid2101.140995.
[65]
K. E. Jones et al., ‘Global trends in emerging infectious diseases’, Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008, doi: 10.1038/nature06536.
[66]
A. G. D. Bean et al., ‘Studying immunity to zoonotic diseases in the natural host — keeping it real’, Nature Reviews Immunology, vol. 13, no. 12, pp. 851–861, Dec. 2013, doi: 10.1038/nri3551.
[67]
T. Kuiken, E. C. Holmes, J. McCauley, G. F. Rimmelzwaan, C. S. Williams, and B. T. Grenfell, ‘Host Species Barriers to Influenza Virus Infections’, Science, vol. 312, no. 5772, pp. 394–397, Apr. 2006, doi: 10.1126/science.1122818.
[68]
S. S. Morse et al., ‘Prediction and prevention of the next pandemic zoonosis’, The Lancet, vol. 380, no. 9857, pp. 1956–1965, Dec. 2012, doi: 10.1016/S0140-6736(12)61684-5.
[69]
M. E. J. Woolhouse, D. T. Haydon, and R. Antia, ‘Emerging pathogens: the epidemiology and evolution of species jumps’, Trends in Ecology & Evolution, vol. 20, no. 5, pp. 238–244, May 2005, doi: 10.1016/j.tree.2005.02.009.
[70]
A. Fenton and A. B. Pedersen, ‘Community Epidemiology Framework for Classifying Disease Threats’, Emerging Infectious Diseases, vol. 11, no. 12, pp. 1815–1821, Dec. 2005, doi: 10.3201/eid1112.050306.
[71]
M. E. J. Woolhouse and C. Dye, ‘Preface’, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 356, no. 1411, pp. 981–982, Jul. 2001, doi: 10.1098/rstb.2001.0899.
[72]
S. Cleaveland and C. Dye, ‘Maintenance of a microparasite infecting several host species: rabies in the Serengeti’, Parasitology, vol. 111, no. S1, Jan. 1995, doi: 10.1017/S0031182000075806.
[73]
M. B. Casey et al., ‘Patterns of Foot-and-Mouth Disease Virus Distribution in Africa’, in The Role of Animals in Emerging Viral Diseases, Elsevier, 2014, pp. 21–38.
[74]
M. S. Bartlett, Stochastic Population Models in Ecology and Epidemology. Methuen, 1960.
[75]
M. S. Bartlett, ‘Measles Periodicity and Community Size’, Journal of the Royal Statistical Society. Series A (General), vol. 120, no. 1, 1957, doi: 10.2307/2342553.
[76]
M. E. Gompper, Ed., Free-ranging dogs and wildlife conservation, First edition. Oxford: Oxford University Press, 2014 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://dx.doi.org/10.1093/acprof:osobl/9780199663217.001.0001
[77]
K. J. Ferguson et al., ‘Evaluating the Potential for the Environmentally Sustainable Control of Foot and Mouth Disease in Sub-Saharan Africa’, EcoHealth, vol. 10, no. 3, pp. 314–322, Sep. 2013, doi: 10.1007/s10393-013-0850-6.
[78]
P. Klepac, S. Funk, T. D. Hollingsworth, C. J. E. Metcalf, and K. Hampson, ‘Six challenges in the eradication of infectious diseases’, Epidemics, vol. 10, pp. 97–101, Mar. 2015, doi: 10.1016/j.epidem.2014.12.001.
[79]
R. J. Delahay, G. C. Smith, and M. R. Hutchings, Management of disease in wild mammals. Tokyo: Springer, 2009 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://dx.doi.org/10.1007/978-4-431-77134-0
[80]
Conservation and Development Interventions at the wildlife/livestock interface. World Conservation Union [Online]. Available: https://www.wcs-ahead.org/book/AHEADbook27MB.pdf
[81]
D. L. Knobel, T. Lembo, M. Morters, S. E. Townsend, S. Cleaveland, and K. Hampson, ‘Dog Rabies and Its Control’, in Rabies, Elsevier, 2013, pp. 591–615.
[82]
D. L. Knobel, J. R. A. Butler, T. Lembo, R. Critchlow, and M. E. Gompper, ‘Dogs, disease, and wildlife’, in Free-Ranging Dogs and Wildlife Conservation, M. E. Gompper, Ed. Oxford University Press, 2013, pp. 144–169 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://www.oxfordscholarship.com/view/10.1093/acprof:osobl/9780199663217.001.0001/acprof-9780199663217
[83]
T. Lembo et al., ‘The Feasibility of Canine Rabies Elimination in Africa: Dispelling Doubts with Data’, PLoS Neglected Tropical Diseases, vol. 4, no. 2, Feb. 2010, doi: 10.1371/journal.pntd.0000626.
[84]
K. Hampson et al., ‘Rabies Exposures, Post-Exposure Prophylaxis and Deaths in a Region of Endemic Canine Rabies’, PLoS Neglected Tropical Diseases, vol. 2, no. 11, Nov. 2008, doi: 10.1371/journal.pntd.0000339.
[85]
S. CLEAVELAND et al., ‘The Conservation Relevance of Epidemiological Research into Carnivore Viral Diseases in the Serengeti’, Conservation Biology, vol. 21, no. 3, pp. 612–622, Jun. 2007, doi: 10.1111/j.1523-1739.2007.00701.x.
[86]
C. D. Marsden, R. K. Wayne, and B. K. Mable, ‘Inferring the ancestry of African wild dogs that returned to the Serengeti-Mara’, Conservation Genetics, vol. 13, no. 2, pp. 525–533, Apr. 2012, doi: 10.1007/s10592-011-0304-z.
[87]
D. T. Haydon et al., ‘Low-coverage vaccination strategies for the conservation of endangered species’, Nature, vol. 443, no. 7112, pp. 692–695, Oct. 2006, doi: 10.1038/nature05177.
[88]
S. A. J. Leendertz et al., ‘Ebola in great apes - current knowledge, possibilities for vaccination, and implications for conservation and human health’, Mammal Review, vol. 47, no. 2, pp. 98–111, Apr. 2017, doi: 10.1111/mam.12082.
[89]
S. Parida, ‘Vaccination against foot-and-mouth disease virus: strategies and effectiveness’, Expert Review of Vaccines, vol. 8, no. 3, pp. 347–365, Mar. 2009, doi: 10.1586/14760584.8.3.347.
[90]
A. C. Jackson and W. H. Wunner, Eds., Rabies. Orlando, Florida: Academic Press, 2002 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://doi.org/10.1016/B978-0-12-379077-4.X5000-7
[91]
S. E. Townsend et al., ‘Surveillance guidelines for disease elimination: A case study of canine rabies’, Comparative Immunology, Microbiology and Infectious Diseases, vol. 36, no. 3, pp. 249–261, May 2013, doi: 10.1016/j.cimid.2012.10.008.
[92]
S. E. Townsend et al., ‘Designing Programs for Eliminating Canine Rabies from Islands: Bali, Indonesia as a Case Study’, PLoS Neglected Tropical Diseases, vol. 7, no. 8, Aug. 2013, doi: 10.1371/journal.pntd.0002372.
[93]
C. A. Donnelly et al., ‘Positive and negative effects of widespread badger culling on tuberculosis in cattle’, Nature, vol. 439, no. 7078, pp. 843–846, Feb. 2006, doi: 10.1038/nature04454.
[94]
K. Hampson et al., ‘Transmission Dynamics and Prospects for the Elimination of Canine Rabies’, PLoS Biology, vol. 7, no. 3, Mar. 2009, doi: 10.1371/journal.pbio.1000053.
[95]
C. M. Nunes et al., ‘Dog culling and replacement in an area endemic for visceral leishmaniasis in Brazil’, Veterinary Parasitology, vol. 153, no. 1–2, pp. 19–23, May 2008, doi: 10.1016/j.vetpar.2008.01.005.
[96]
M. K. Morters, O. Restif, K. Hampson, S. Cleaveland, J. L. N. Wood, and A. J. K. Conlan, ‘Evidence-based control of canine rabies: a critical review of population density reduction’, Journal of Animal Ecology, vol. 82, no. 1, pp. 6–14, Jan. 2013, doi: 10.1111/j.1365-2656.2012.02033.x.
[97]
K. Hampson et al., ‘Estimating the Global Burden of Endemic Canine Rabies’, PLOS Neglected Tropical Diseases, vol. 9, no. 4, Apr. 2015, doi: 10.1371/journal.pntd.0003709.
[98]
M. A. N. Vigilato et al., ‘Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 368, no. 1623, pp. 20120143–20120143, Jun. 2013, doi: 10.1098/rstb.2012.0143.
[99]
P. Klepac, C. J. E. Metcalf, A. R. McLean, and K. Hampson, ‘Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 368, no. 1623, pp. 20120137–20120137, Jun. 2013, doi: 10.1098/rstb.2012.0137.
[100]
World Health Organization, Anthrax in humans and animals. Geneva, Switzerland: World Health Organization, 2008 [Online]. Available: https://www.who.int/csr/resources/publications/AnthraxGuidelines2008/en/