1.
Bear MF, Connors BW, Paradiso MA. Neuroscience: Exploring the Brain. Fourth edition. Wolters Kluwer; 2016.
2.
Squire LR. Fundamental Neuroscience. 3rd ed. Academic Press; 2008. https://www.vlebooks.com/vleweb/product/openreader?id=GlasgowUni&isbn=9780080561028
3.
Kandel ER, Schwartz JH, Jessell TM. Essentials of Neural Science and Behavior. Appleton & Lange; 1995.
4.
Kandel ER. Principles of Neural Science. 5th ed. McGraw-Hill Medical; 2013. http://lib.myilibrary.com?id=396874&entityid=https://idp.gla.ac.uk/shibboleth
5.
Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience. 1999;2(10):859-861. doi:10.1038/13154
6.
Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience. 1999;2(10):861-863. doi:10.1038/13158
7.
Sowell ER. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. Journal of Neuroscience. 2004;24(38):8223-8231. doi:10.1523/JNEUROSCI.1798-04.2004
8.
Van Leijenhorst L, Zanolie K, Van Meel CS, Westenberg PM, Rombouts SARB, Crone EA. What Motivates the Adolescent? Brain Regions Mediating Reward Sensitivity across Adolescence. Cerebral Cortex. 2010;20(1):61-69. doi:10.1093/cercor/bhp078
9.
Pfeifer JH, Masten CL, Moore WE, et al. Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity. Neuron. 2011;69(5):1029-1036. doi:10.1016/j.neuron.2011.02.019
10.
Hu S, Pruessner JC, Coupé P, Collins DL. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage. 2013;74:276-287. doi:10.1016/j.neuroimage.2013.02.032
11.
Ganzel BL, Kim P, Gilmore H, Tottenham N, Temple E. Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology. 2013;25(4pt1):879-889. doi:10.1017/S0954579413000242
12.
Haslam C, Cruwys T, Haslam SA. "The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. Social Science & Medicine. 2014;120:57-66. doi:10.1016/j.socscimed.2014.08.037
13.
Gould E, Tanapat P, Hastings NB, Shors TJ. Neurogenesis in adulthood: a possible role in learning. Trends in Cognitive Sciences. 1999;3(5):186-192. doi:10.1016/S1364-6613(99)01310-8
14.
Cameron HA, McKay RDG. Restoring production of hippocampal neurons in old age. Nature Neuroscience. 1999;2(10):894-897. doi:10.1038/13197
15.
Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nature Neuroscience. 2003;6(3):309-315. doi:10.1038/nn1008
16.
Holmes MM, Galea LAM, Mistlberger RE, Kempermann G. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research. 2004;76(2):216-222. doi:10.1002/jnr.20039
17.
Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Experimental Neurology. 2012;233(1):12-21. doi:10.1016/j.expneurol.2011.01.008
18.
Eisch AJ, Petrik D. Depression and Hippocampal Neurogenesis: A Road to Remission? Science. 2012;338(6103):72-75. doi:10.1126/science.1222941
19.
Killgore WDS, Olson EA, Weber M. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans. Scientific Reports. 2013;3(1). doi:10.1038/srep03457
20.
Olshansky SJ. No Truth to the Fountain of Youth. Science of Aging Knowledge Environment. 2002;2002(27):5vp-5. doi:10.1126/sageke.2002.27.vp5
21.
Lu T, Pan Y, Kao SY, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883-891. doi:10.1038/nature02661
22.
Zglinicki T von, Saretzki G, Ladhoff J, Fagagna F d’Adda di, Jackson SP. Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development. 2005;126(1):111-117. doi:10.1016/j.mad.2004.09.034
23.
Queen TL, Hess TM, Ennis GE, Dowd K, Grühn D. Information search and decision making: Effects of age and complexity on strategy use. Psychology and Aging. 2012;27(4):817-824. https://ezproxy.lib.gla.ac.uk/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=2012-14235-001&site=ehost-live
24.
Bherer L, Erickson KI, Liu-Ambrose T. A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults. Journal of Aging Research. 2013;2013:1-8. doi:10.1155/2013/657508
25.
DeBruine, Lisa. Beyond ‘just-so stories’. Psychologist. 2009;22(11):930-932. https://ezproxy.lib.gla.ac.uk/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=pbh&AN=45649792&site=ehost-live
26.
Scott-Phillips TC, Dickins TE, West SA. Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science. 2011;6(1):38-47. doi:10.1177/1745691610393528
27.
Jackson RE, Cormack LK. Evolved navigation theory and the descent illusion. Perception & Psychophysics. 2007;69(3):353-362. doi:10.3758/BF03193756
28.
DeBruine LM, Jones BC, Little AC, Perrett DI. Social Perception of Facial Resemblance in Humans. Archives of Sexual Behavior. 2008;37(1):64-77. doi:10.1007/s10508-007-9266-0
29.
Tybur JM, Gangestad SW. Mate preferences and infectious disease: theoretical considerations and evidence in humans. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1583):3375-3388. doi:10.1098/rstb.2011.0136
30.
Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience. 2009;10(5):360-372. doi:10.1038/nrn2619
31.
Luo DG, Xue T, Yau KW. How vision begins: An odyssey. Proceedings of the National Academy of Sciences. 2008;105(29):9855-9862. doi:10.1073/pnas.0708405105
32.
Hubel D. Eye, Brain, and Vision. http://hubel.med.harvard.edu/index.html
33.
Rolls ET. Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition. Neuron. 2000;27(2):205-218. doi:10.1016/S0896-6273(00)00030-1
34.
Tanaka K. Columns for Complex Visual Object Features in the Inferotemporal Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivities. Cerebral Cortex. 2003;13(1):90-99. doi:10.1093/cercor/13.1.90