1.
Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience: Exploring the Brain. (Wolters Kluwer, Philadelphia, Pennsylvania, 2016).
2.
Squire, L. R. Fundamental Neuroscience. (Academic Press, Amsterdam, 2008).
3.
Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Essentials of Neural Science and Behavior. (Appleton & Lange, Stamford, Conn, 1995).
4.
Kandel, E. R. Principles of Neural Science. (McGraw-Hill Medical, New York, NY, 2013).
5.
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L. & Toga, A. W. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience 2, 859–861 (1999).
6.
Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience 2, 861–863 (1999).
7.
Sowell, E. R. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. Journal of Neuroscience 24, 8223–8231 (2004).
8.
Van Leijenhorst, L. et al. What Motivates the Adolescent? Brain Regions Mediating Reward Sensitivity across Adolescence. Cerebral Cortex 20, 61–69 (2010).
9.
Pfeifer, J. H. et al. Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity. Neuron 69, 1029–1036 (2011).
10.
Hu, S., Pruessner, J. C., Coupé, P. & Collins, D. L. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage 74, 276–287 (2013).
11.
Ganzel, B. L., Kim, P., Gilmore, H., Tottenham, N. & Temple, E. Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology 25, 879–889 (2013).
12.
Haslam, C., Cruwys, T. & Haslam, S. A. "The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. Social Science & Medicine 120, 57–66 (2014).
13.
Gould, E., Tanapat, P., Hastings, N. B. & Shors, T. J. Neurogenesis in adulthood: a possible role in learning. Trends in Cognitive Sciences 3, 186–192 (1999).
14.
Cameron, H. A. & McKay, R. D. G. Restoring production of hippocampal neurons in old age. Nature Neuroscience 2, 894–897 (1999).
15.
Sowell, E. R. et al. Mapping cortical change across the human life span. Nature Neuroscience 6, 309–315 (2003).
16.
Holmes, M. M., Galea, L. A. M., Mistlberger, R. E. & Kempermann, G. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research 76, 216–222 (2004).
17.
Schoenfeld, T. J. & Gould, E. Stress, stress hormones, and adult neurogenesis. Experimental Neurology 233, 12–21 (2012).
18.
Eisch, A. J. & Petrik, D. Depression and Hippocampal Neurogenesis: A Road to Remission? Science 338, 72–75 (2012).
19.
Killgore, W. D. S., Olson, E. A. & Weber, M. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans. Scientific Reports 3, (2013).
20.
Olshansky, S. J. No Truth to the Fountain of Youth. Science of Aging Knowledge Environment 2002, 5vp–5 (2002).
21.
Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).
22.
Zglinicki, T. von, Saretzki, G., Ladhoff, J., Fagagna, F. d’Adda di & Jackson, S. P. Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development 126, 111–117 (2005).
23.
Queen, T. L., Hess, T. M., Ennis, G. E., Dowd, K. & Grühn, D. Information search and decision making: Effects of age and complexity on strategy use. Psychology and Aging 27, 817–824 (2012).
24.
Bherer, L., Erickson, K. I. & Liu-Ambrose, T. A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults. Journal of Aging Research 2013, 1–8 (2013).
25.
DeBruine, Lisa. Beyond ‘just-so stories’. Psychologist 22, 930–932 (2009).
26.
Scott-Phillips, T. C., Dickins, T. E. & West, S. A. Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science 6, 38–47 (2011).
27.
Jackson, R. E. & Cormack, L. K. Evolved navigation theory and the descent illusion. Perception & Psychophysics 69, 353–362 (2007).
28.
DeBruine, L. M., Jones, B. C., Little, A. C. & Perrett, D. I. Social Perception of Facial Resemblance in Humans. Archives of Sexual Behavior 37, 64–77 (2008).
29.
Tybur, J. M. & Gangestad, S. W. Mate preferences and infectious disease: theoretical considerations and evidence in humans. Philosophical Transactions of the Royal Society B: Biological Sciences 366, 3375–3388 (2011).
30.
Nassi, J. J. & Callaway, E. M. Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience 10, 360–372 (2009).
31.
Luo, D.-G., Xue, T. & Yau, K.-W. How vision begins: An odyssey. Proceedings of the National Academy of Sciences 105, 9855–9862 (2008).
32.
Hubel, D. Eye, Brain, and Vision. http://hubel.med.harvard.edu/index.html.
33.
Rolls, E. T. Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition. Neuron 27, 205–218 (2000).
34.
Tanaka, K. Columns for Complex Visual Object Features in the Inferotemporal Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivities. Cerebral Cortex 13, 90–99 (2003).