1
Bear MF, Connors BW, Paradiso MA. Neuroscience: exploring the brain. Fourth edition. Philadelphia, Pennsylvania: Wolters Kluwer 2016.
2
Squire LR. Fundamental neuroscience. 3rd ed. Amsterdam: Academic Press 2008.
3
Kandel ER, Schwartz JH, Jessell TM. Essentials of neural science and behavior. Stamford, Conn: Appleton & Lange 1995.
4
Kandel ER. Principles of neural science. 5th ed. New York, NY: McGraw-Hill Medical 2013.
5
Sowell ER, Thompson PM, Holmes CJ, et al. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience. 1999;2:859–61. doi: 10.1038/13154
6
Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience. 1999;2:861–3. doi: 10.1038/13158
7
Sowell ER. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. Journal of Neuroscience. 2004;24:8223–31. doi: 10.1523/JNEUROSCI.1798-04.2004
8
Van Leijenhorst L, Zanolie K, Van Meel CS, et al. What Motivates the Adolescent? Brain Regions Mediating Reward Sensitivity across Adolescence. Cerebral Cortex. 2010;20:61–9. doi: 10.1093/cercor/bhp078
9
Pfeifer JH, Masten CL, Moore WE, et al. Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity. Neuron. 2011;69:1029–36. doi: 10.1016/j.neuron.2011.02.019
10
Hu S, Pruessner JC, Coupé P, et al. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage. 2013;74:276–87. doi: 10.1016/j.neuroimage.2013.02.032
11
Ganzel BL, Kim P, Gilmore H, et al. Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology. 2013;25:879–89. doi: 10.1017/S0954579413000242
12
Haslam C, Cruwys T, Haslam SA. "The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. Social Science & Medicine. 2014;120:57–66. doi: 10.1016/j.socscimed.2014.08.037
13
Gould E, Tanapat P, Hastings NB, et al. Neurogenesis in adulthood: a possible role in learning. Trends in Cognitive Sciences. 1999;3:186–92. doi: 10.1016/S1364-6613(99)01310-8
14
Cameron HA, McKay RDG. Restoring production of hippocampal neurons in old age. Nature Neuroscience. 1999;2:894–7. doi: 10.1038/13197
15
Sowell ER, Peterson BS, Thompson PM, et al. Mapping cortical change across the human life span. Nature Neuroscience. 2003;6:309–15. doi: 10.1038/nn1008
16
Holmes MM, Galea LAM, Mistlberger RE, et al. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research. 2004;76:216–22. doi: 10.1002/jnr.20039
17
Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Experimental Neurology. 2012;233:12–21. doi: 10.1016/j.expneurol.2011.01.008
18
Eisch AJ, Petrik D. Depression and Hippocampal Neurogenesis: A Road to Remission? Science. 2012;338:72–5. doi: 10.1126/science.1222941
19
Killgore WDS, Olson EA, Weber M. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans. Scientific Reports. 2013;3. doi: 10.1038/srep03457
20
Olshansky SJ. No Truth to the Fountain of Youth. Science of Aging Knowledge Environment. 2002;2002:5vp–5. doi: 10.1126/sageke.2002.27.vp5
21
Lu T, Pan Y, Kao S-Y, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429:883–91. doi: 10.1038/nature02661
22
Zglinicki T von, Saretzki G, Ladhoff J, et al. Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development. 2005;126:111–7. doi: 10.1016/j.mad.2004.09.034
23
Queen TL, Hess TM, Ennis GE, et al. Information search and decision making: Effects of age and complexity on strategy use. Psychology and Aging. 2012;27:817–24.
24
Bherer L, Erickson KI, Liu-Ambrose T. A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults. Journal of Aging Research. 2013;2013:1–8. doi: 10.1155/2013/657508
25
DeBruine, Lisa. Beyond ‘just-so stories’. Psychologist. 2009;22:930–2.
26
Scott-Phillips TC, Dickins TE, West SA. Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science. 2011;6:38–47. doi: 10.1177/1745691610393528
27
Jackson RE, Cormack LK. Evolved navigation theory and the descent illusion. Perception & Psychophysics. 2007;69:353–62. doi: 10.3758/BF03193756
28
DeBruine LM, Jones BC, Little AC, et al. Social Perception of Facial Resemblance in Humans. Archives of Sexual Behavior. 2008;37:64–77. doi: 10.1007/s10508-007-9266-0
29
Tybur JM, Gangestad SW. Mate preferences and infectious disease: theoretical considerations and evidence in humans. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366:3375–88. doi: 10.1098/rstb.2011.0136
30
Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience. 2009;10:360–72. doi: 10.1038/nrn2619
31
Luo D-G, Xue T, Yau K-W. How vision begins: An odyssey. Proceedings of the National Academy of Sciences. 2008;105:9855–62. doi: 10.1073/pnas.0708405105
32
Hubel D. Eye, Brain, and Vision. http://hubel.med.harvard.edu/index.html
33
Rolls ET. Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition. Neuron. 2000;27:205–18. doi: 10.1016/S0896-6273(00)00030-1
34
Tanaka K. Columns for Complex Visual Object Features in the Inferotemporal Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivities. Cerebral Cortex. 2003;13:90–9. doi: 10.1093/cercor/13.1.90