[1]
M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience: exploring the brain, Fourth edition. Philadelphia, Pennsylvania: Wolters Kluwer, 2016.
[2]
L. R. Squire, Fundamental neuroscience, 3rd ed. Amsterdam: Academic Press, 2008. Available: https://www.vlebooks.com/vleweb/product/openreader?id=GlasgowUni&isbn=9780080561028
[3]
E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Essentials of neural science and behavior. Stamford, Conn: Appleton & Lange, 1995.
[4]
E. R. Kandel, Principles of neural science, 5th ed. New York, NY: McGraw-Hill Medical, 2013. Available: http://lib.myilibrary.com?id=396874&entityid=https://idp.gla.ac.uk/shibboleth
[5]
E. R. Sowell, P. M. Thompson, C. J. Holmes, T. L. Jernigan, and A. W. Toga, ‘In vivo evidence for post-adolescent brain maturation in frontal and striatal regions’, Nature Neuroscience, vol. 2, no. 10, pp. 859–861, Oct. 1999, doi: 10.1038/13154
[6]
J. N. Giedd et al., ‘Brain development during childhood and adolescence: a longitudinal MRI study’, Nature Neuroscience, vol. 2, no. 10, pp. 861–863, Oct. 1999, doi: 10.1038/13158
[7]
E. R. Sowell, ‘Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children’, Journal of Neuroscience, vol. 24, no. 38, pp. 8223–8231, Sept. 2004, doi: 10.1523/JNEUROSCI.1798-04.2004
[8]
L. Van Leijenhorst, K. Zanolie, C. S. Van Meel, P. M. Westenberg, S. A. R. B. Rombouts, and E. A. Crone, ‘What Motivates the Adolescent? Brain Regions Mediating Reward Sensitivity across Adolescence’, Cerebral Cortex, vol. 20, no. 1, pp. 61–69, Jan. 2010, doi: 10.1093/cercor/bhp078
[9]
J. H. Pfeifer et al., ‘Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity’, Neuron, vol. 69, no. 5, pp. 1029–1036, Mar. 2011, doi: 10.1016/j.neuron.2011.02.019
[10]
S. Hu, J. C. Pruessner, P. Coupé, and D. L. Collins, ‘Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence’, NeuroImage, vol. 74, pp. 276–287, July 2013, doi: 10.1016/j.neuroimage.2013.02.032
[11]
B. L. Ganzel, P. Kim, H. Gilmore, N. Tottenham, and E. Temple, ‘Stress and the healthy adolescent brain: Evidence for the neural embedding of life events’, Development and Psychopathology, vol. 25, no. 4pt1, pp. 879–889, Nov. 2013, doi: 10.1017/S0954579413000242
[12]
C. Haslam, T. Cruwys, and S. A. Haslam, ‘"The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging’, Social Science & Medicine, vol. 120, pp. 57–66, Nov. 2014, doi: 10.1016/j.socscimed.2014.08.037
[13]
E. Gould, P. Tanapat, N. B. Hastings, and T. J. Shors, ‘Neurogenesis in adulthood: a possible role in learning’, Trends in Cognitive Sciences, vol. 3, no. 5, pp. 186–192, May 1999, doi: 10.1016/S1364-6613(99)01310-8
[14]
H. A. Cameron and R. D. G. McKay, ‘Restoring production of hippocampal neurons in old age’, Nature Neuroscience, vol. 2, no. 10, pp. 894–897, Oct. 1999, doi: 10.1038/13197
[15]
E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius, and A. W. Toga, ‘Mapping cortical change across the human life span’, Nature Neuroscience, vol. 6, no. 3, pp. 309–315, Mar. 2003, doi: 10.1038/nn1008
[16]
M. M. Holmes, L. A. M. Galea, R. E. Mistlberger, and G. Kempermann, ‘Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects’, Journal of Neuroscience Research, vol. 76, no. 2, pp. 216–222, Apr. 2004, doi: 10.1002/jnr.20039
[17]
T. J. Schoenfeld and E. Gould, ‘Stress, stress hormones, and adult neurogenesis’, Experimental Neurology, vol. 233, no. 1, pp. 12–21, Jan. 2012, doi: 10.1016/j.expneurol.2011.01.008
[18]
A. J. Eisch and D. Petrik, ‘Depression and Hippocampal Neurogenesis: A Road to Remission?’, Science, vol. 338, no. 6103, pp. 72–75, 2012, doi: 10.1126/science.1222941
[19]
W. D. S. Killgore, E. A. Olson, and M. Weber, ‘Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans’, Scientific Reports, vol. 3, no. 1, Dec. 2013, doi: 10.1038/srep03457
[20]
S. J. Olshansky, ‘No Truth to the Fountain of Youth’, Science of Aging Knowledge Environment, vol. 2002, no. 27, pp. 5vp–5, July 2002, doi: 10.1126/sageke.2002.27.vp5
[21]
T. Lu et al., ‘Gene regulation and DNA damage in the ageing human brain’, Nature, vol. 429, no. 6994, pp. 883–891, June 2004, doi: 10.1038/nature02661
[22]
T. von Zglinicki, G. Saretzki, J. Ladhoff, F. d’Adda di Fagagna, and S. P. Jackson, ‘Human cell senescence as a DNA damage response’, Mechanisms of Ageing and Development, vol. 126, no. 1, pp. 111–117, Jan. 2005, doi: 10.1016/j.mad.2004.09.034
[23]
T. L. Queen, T. M. Hess, G. E. Ennis, K. Dowd, and D. Grühn, ‘Information search and decision making: Effects of age and complexity on strategy use.’, Psychology and Aging, vol. 27, no. 4, pp. 817–824, 2012, Available: https://ezproxy.lib.gla.ac.uk/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=2012-14235-001&site=ehost-live
[24]
L. Bherer, K. I. Erickson, and T. Liu-Ambrose, ‘A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults’, Journal of Aging Research, vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/657508
[25]
DeBruine, Lisa, ‘Beyond “just-so stories”.’, Psychologist, vol. 22, no. 11, pp. 930–932, 2009, Available: https://ezproxy.lib.gla.ac.uk/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=pbh&AN=45649792&site=ehost-live
[26]
T. C. Scott-Phillips, T. E. Dickins, and S. A. West, ‘Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences’, Perspectives on Psychological Science, vol. 6, no. 1, pp. 38–47, Jan. 2011, doi: 10.1177/1745691610393528
[27]
R. E. Jackson and L. K. Cormack, ‘Evolved navigation theory and the descent illusion’, Perception & Psychophysics, vol. 69, no. 3, pp. 353–362, Apr. 2007, doi: 10.3758/BF03193756
[28]
L. M. DeBruine, B. C. Jones, A. C. Little, and D. I. Perrett, ‘Social Perception of Facial Resemblance in Humans’, Archives of Sexual Behavior, vol. 37, no. 1, pp. 64–77, Feb. 2008, doi: 10.1007/s10508-007-9266-0
[29]
J. M. Tybur and S. W. Gangestad, ‘Mate preferences and infectious disease: theoretical considerations and evidence in humans’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 366, no. 1583, pp. 3375–3388, Dec. 2011, doi: 10.1098/rstb.2011.0136
[30]
J. J. Nassi and E. M. Callaway, ‘Parallel processing strategies of the primate visual system’, Nature Reviews Neuroscience, vol. 10, no. 5, pp. 360–372, May 2009, doi: 10.1038/nrn2619
[31]
D.-G. Luo, T. Xue, and K.-W. Yau, ‘How vision begins: An odyssey’, Proceedings of the National Academy of Sciences, vol. 105, no. 29, pp. 9855–9862, July 2008, doi: 10.1073/pnas.0708405105
[32]
D. Hubel, ‘Eye, Brain, and Vision’. Available: http://hubel.med.harvard.edu/index.html
[33]
E. T. Rolls, ‘Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition’, Neuron, vol. 27, no. 2, pp. 205–218, Aug. 2000, doi: 10.1016/S0896-6273(00)00030-1
[34]
K. Tanaka, ‘Columns for Complex Visual Object Features in the Inferotemporal Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivities’, Cerebral Cortex, vol. 13, no. 1, pp. 90–99, Jan. 2003, doi: 10.1093/cercor/13.1.90