1.
Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: exploring the brain. Wolters Kluwer, Philadelphia, Pennsylvania (2016).
2.
Squire, L.R.: Fundamental neuroscience. Academic Press, Amsterdam (2008).
3.
Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Essentials of neural science and behavior. Appleton & Lange, Stamford, Conn (1995).
4.
Kandel, E.R.: Principles of neural science. McGraw-Hill Medical, New York, NY (2013).
5.
Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L., Toga, A.W.: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience. 2, 859–861 (1999). https://doi.org/10.1038/13154.
6.
Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., Rapoport, J.L.: Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience. 2, 861–863 (1999). https://doi.org/10.1038/13158.
7.
Sowell, E.R.: Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. Journal of Neuroscience. 24, 8223–8231 (2004). https://doi.org/10.1523/JNEUROSCI.1798-04.2004.
8.
Van Leijenhorst, L., Zanolie, K., Van Meel, C.S., Westenberg, P.M., Rombouts, S.A.R.B., Crone, E.A.: What Motivates the Adolescent? Brain Regions Mediating Reward Sensitivity across Adolescence. Cerebral Cortex. 20, 61–69 (2010). https://doi.org/10.1093/cercor/bhp078.
9.
Pfeifer, J.H., Masten, C.L., Moore, W.E., Oswald, T.M., Mazziotta, J.C., Iacoboni, M., Dapretto, M.: Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity. Neuron. 69, 1029–1036 (2011). https://doi.org/10.1016/j.neuron.2011.02.019.
10.
Hu, S., Pruessner, J.C., Coupé, P., Collins, D.L.: Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage. 74, 276–287 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.032.
11.
Ganzel, B.L., Kim, P., Gilmore, H., Tottenham, N., Temple, E.: Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology. 25, 879–889 (2013). https://doi.org/10.1017/S0954579413000242.
12.
Haslam, C., Cruwys, T., Haslam, S.A.: "The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. Social Science & Medicine. 120, 57–66 (2014). https://doi.org/10.1016/j.socscimed.2014.08.037.
13.
Gould, E., Tanapat, P., Hastings, N.B., Shors, T.J.: Neurogenesis in adulthood: a possible role in learning. Trends in Cognitive Sciences. 3, 186–192 (1999). https://doi.org/10.1016/S1364-6613(99)01310-8.
14.
Cameron, H.A., McKay, R.D.G.: Restoring production of hippocampal neurons in old age. Nature Neuroscience. 2, 894–897 (1999). https://doi.org/10.1038/13197.
15.
Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., Toga, A.W.: Mapping cortical change across the human life span. Nature Neuroscience. 6, 309–315 (2003). https://doi.org/10.1038/nn1008.
16.
Holmes, M.M., Galea, L.A.M., Mistlberger, R.E., Kempermann, G.: Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research. 76, 216–222 (2004). https://doi.org/10.1002/jnr.20039.
17.
Schoenfeld, T.J., Gould, E.: Stress, stress hormones, and adult neurogenesis. Experimental Neurology. 233, 12–21 (2012). https://doi.org/10.1016/j.expneurol.2011.01.008.
18.
Eisch, A.J., Petrik, D.: Depression and Hippocampal Neurogenesis: A Road to Remission? Science. 338, 72–75 (2012). https://doi.org/10.1126/science.1222941.
19.
Killgore, W.D.S., Olson, E.A., Weber, M.: Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans. Scientific Reports. 3, (2013). https://doi.org/10.1038/srep03457.
20.
Olshansky, S.J.: No Truth to the Fountain of Youth. Science of Aging Knowledge Environment. 2002, 5vp–5 (2002). https://doi.org/10.1126/sageke.2002.27.vp5.
21.
Lu, T., Pan, Y., Kao, S.-Y., Li, C., Kohane, I., Chan, J., Yankner, B.A.: Gene regulation and DNA damage in the ageing human brain. Nature. 429, 883–891 (2004). https://doi.org/10.1038/nature02661.
22.
Zglinicki, T. von, Saretzki, G., Ladhoff, J., Fagagna, F. d’Adda di, Jackson, S.P.: Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development. 126, 111–117 (2005). https://doi.org/10.1016/j.mad.2004.09.034.
23.
Queen, T.L., Hess, T.M., Ennis, G.E., Dowd, K., Grühn, D.: Information search and decision making: Effects of age and complexity on strategy use. Psychology and Aging. 27, 817–824 (2012).
24.
Bherer, L., Erickson, K.I., Liu-Ambrose, T.: A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults. Journal of Aging Research. 2013, 1–8 (2013). https://doi.org/10.1155/2013/657508.
25.
DeBruine, Lisa: Beyond ‘just-so stories’. Psychologist. 22, 930–932 (2009).
26.
Scott-Phillips, T.C., Dickins, T.E., West, S.A.: Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science. 6, 38–47 (2011). https://doi.org/10.1177/1745691610393528.
27.
Jackson, R.E., Cormack, L.K.: Evolved navigation theory and the descent illusion. Perception & Psychophysics. 69, 353–362 (2007). https://doi.org/10.3758/BF03193756.
28.
DeBruine, L.M., Jones, B.C., Little, A.C., Perrett, D.I.: Social Perception of Facial Resemblance in Humans. Archives of Sexual Behavior. 37, 64–77 (2008). https://doi.org/10.1007/s10508-007-9266-0.
29.
Tybur, J.M., Gangestad, S.W.: Mate preferences and infectious disease: theoretical considerations and evidence in humans. Philosophical Transactions of the Royal Society B: Biological Sciences. 366, 3375–3388 (2011). https://doi.org/10.1098/rstb.2011.0136.
30.
Nassi, J.J., Callaway, E.M.: Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience. 10, 360–372 (2009). https://doi.org/10.1038/nrn2619.
31.
Luo, D.-G., Xue, T., Yau, K.-W.: How vision begins: An odyssey. Proceedings of the National Academy of Sciences. 105, 9855–9862 (2008). https://doi.org/10.1073/pnas.0708405105.
32.
Hubel, D.: Eye, Brain, and Vision, http://hubel.med.harvard.edu/index.html.
33.
Rolls, E.T.: Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition. Neuron. 27, 205–218 (2000). https://doi.org/10.1016/S0896-6273(00)00030-1.
34.
Tanaka, K.: Columns for Complex Visual Object Features in the Inferotemporal Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivities. Cerebral Cortex. 13, 90–99 (2003). https://doi.org/10.1093/cercor/13.1.90.