[1]
BAAR, K. 2006. Training for Endurance and Strength. Medicine & Science in Sports & Exercise. 38, 11 (Nov. 2006), 1939–1944. DOI:https://doi.org/10.1249/01.mss.0000233799.62153.19.
[2]
Baar, K. and Hardie, D.G. 2008. Small molecules can have big effects on endurance. Nature Chemical Biology. 4, 10 (Oct. 2008), 583–584. DOI:https://doi.org/10.1038/nchembio1008-583.
[3]
Barrès, R. et al. 2012. Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism. 15, 3 (Mar. 2012), 405–411. DOI:https://doi.org/10.1016/j.cmet.2012.01.001.
[4]
Bogdanis, G.C. et al. 1995. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology. 482, 2 (Jan. 1995), 467–480. DOI:https://doi.org/10.1113/jphysiol.1995.sp020533.
[5]
Boluyt, M.O. et al. 2006. Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. PROTEOMICS. 6, 10 (May 2006), 3154–3169. DOI:https://doi.org/10.1002/pmic.200401356.
[6]
BOOTH, F.W. et al. 1998. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiologica Scandinavica. 162, 3 (Feb. 1998), 343–350. DOI:https://doi.org/10.1046/j.1365-201X.1998.0326e.x.
[7]
Burniston, J.G. 2009. Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. PROTEOMICS. 9, 1 (Jan. 2009), 106–115. DOI:https://doi.org/10.1002/pmic.200800268.
[8]
Burniston, J.G. 2008. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1784, 7–8 (Jul. 2008), 1077–1086. DOI:https://doi.org/10.1016/j.bbapap.2008.04.007.
[9]
Burstein, B. and Nattel, S. 2008. Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology. 51, 8 (Feb. 2008), 802–809. DOI:https://doi.org/10.1016/j.jacc.2007.09.064.
[10]
Bye, A. et al. 2008. Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics. 33, 1 (Mar. 2008), 100–109. DOI:https://doi.org/10.1152/physiolgenomics.00269.2007.
[11]
Bye, A. et al. 2008. Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO. Physiological Genomics. 35, 3 (Nov. 2008), 213–221. DOI:https://doi.org/10.1152/physiolgenomics.90282.2008.
[12]
Carè, A. et al. 2007. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine. 13, 5 (May 2007), 613–618. DOI:https://doi.org/10.1038/nm1582.
[13]
Casey, A. et al. 1996. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. American Journal of Physiology-Endocrinology and Metabolism. 271, 1 (Jul. 1996), E31–E37. DOI:https://doi.org/10.1152/ajpendo.1996.271.1.E31.
[14]
Chien, K.R. 2007. Molecular medicine: MicroRNAs and the tell-tale heart. Nature. 447, 7143 (May 2007), 389–390. DOI:https://doi.org/10.1038/447389a.
[15]
Creemers, E.E.J.M. et al. 2003. Deficiency of TIMP-1 exacerbates LV remodeling after  myocardial infarction in mice. American Journal of Physiology-Heart and Circulatory Physiology. 284, 1 (Jan. 2003), H364–H371. DOI:https://doi.org/10.1152/ajpheart.00511.2002.
[16]
Daniels, A. et al. 2009. Connective tissue growth factor and cardiac fibrosis. Acta Physiologica. 195, 3 (Mar. 2009), 321–338. DOI:https://doi.org/10.1111/j.1748-1716.2008.01936.x.
[17]
Di Biase, V. and Franzini-Armstrong, C. 2005. Evolution of skeletal type e–c coupling. The Journal of Cell Biology. 171, 4 (Nov. 2005), 695–704. DOI:https://doi.org/10.1083/jcb.200503077.
[18]
Diffee, G.M. 2004. Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training. Exercise and Sport Sciences Reviews. 32, 3 (Jul. 2004), 112–119. DOI:https://doi.org/10.1097/00003677-200407000-00007.
[19]
Eto, Y. et al. 2000. Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training. Circulation. 101, 18 (May 2000), 2134–2137. DOI:https://doi.org/10.1161/01.CIR.101.18.2134.
[20]
Fernandes, T. et al. 2015. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology. 309, 4 (Aug. 2015), H543–H552. DOI:https://doi.org/10.1152/ajpheart.00899.2014.
[21]
Hambrecht, R. et al. 2003. Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase. Circulation. 107, 25 (Jul. 2003), 3152–3158. DOI:https://doi.org/10.1161/01.CIR.0000074229.93804.5C.
[22]
Haram, P.M. et al. 1AD. Adaptation of endothelium to exercise training: Insights from experimental studies. 13, (1AD), 336–346.
[23]
Haram, P.M. et al. 2006. Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention & Rehabilitation. 13, 4 (Aug. 2006), 585–591. DOI:https://doi.org/10.1097/01.hjr.0000198920.57685.76.
[24]
Hawley, J.A. et al. 2014. Integrative Biology of Exercise. Cell. 159, 4 (Nov. 2014), 738–749. DOI:https://doi.org/10.1016/j.cell.2014.10.029.
[25]
Hill, M. et al. 2003. Muscle satellite (stem) cell activation during local tissue injury and repair. Journal of Anatomy. 203, 1 (Jul. 2003), 89–99. DOI:https://doi.org/10.1046/j.1469-7580.2003.00195.x.
[26]
Hsu, C.-P. et al. 2008. Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair. The Annals of Thoracic Surgery. 86, 4 (Oct. 2008), 1243–1249. DOI:https://doi.org/10.1016/j.athoracsur.2008.06.043.
[27]
Iemitsu, M. et al. 2006. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. Journal of Applied Physiology. 101, 1 (Jul. 2006), 151–163. DOI:https://doi.org/10.1152/japplphysiol.00392.2005.
[28]
Iemitsu, M. et al. 2005. Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiologica Scandinavica. 185, 4 (Nov. 2005), 259–270. DOI:https://doi.org/10.1111/j.1365-201X.2005.01494.x.
[29]
Jørgensen, S.B. et al. 2006. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. The Journal of Physiology. 574, 1 (Jul. 2006), 17–31. DOI:https://doi.org/10.1113/jphysiol.2006.109942.
[30]
KEMI, O. et al. 2007. Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovascular Research. 76, 1 (Oct. 2007), 91–99. DOI:https://doi.org/10.1016/j.cardiores.2007.06.008.
[31]
KEMI, O. et al. 2005. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research. 67, 1 (Jul. 2005), 161–172. DOI:https://doi.org/10.1016/j.cardiores.2005.03.010.
[32]
Kemi, O.J. et al. 2008. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of Cellular Physiology. 214, 2 (Feb. 2008), 316–321. DOI:https://doi.org/10.1002/jcp.21197.
[33]
Kemi, O.J. et al. 2004. Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining. Circulation. 109, 23 (Jun. 2004), 2897–2904. DOI:https://doi.org/10.1161/01.CIR.0000129308.04757.72.
[34]
Kemi, O.J. et al. 2007. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology. 43, 3 (Sep. 2007), 354–361. DOI:https://doi.org/10.1016/j.yjmcc.2007.06.013.
[35]
Kemi, O.J. and Wisløff, U. 2010. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiologica. 199, 4 (Aug. 2010), 425–439. DOI:https://doi.org/10.1111/j.1748-1716.2010.02132.x.
[36]
Kiens, B. and Richter, E.A. 1998. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology-Endocrinology and Metabolism. 275, 2 (Aug. 1998), E332–E337. DOI:https://doi.org/10.1152/ajpendo.1998.275.2.E332.
[37]
Kong, S.W. et al. 2005. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics. 21, 1 (Mar. 2005), 34–42. DOI:https://doi.org/10.1152/physiolgenomics.00226.2004.
[38]
KOVANEN, V. et al. 1980. Connective tissue of "fast” and "slow” skeletal muscle in rats…effects of endurance training. Acta Physiologica Scandinavica. 108, 2 (Feb. 1980), 173–180. DOI:https://doi.org/10.1111/j.1748-1716.1980.tb06515.x.
[39]
Linke, A. et al. 1AD. Effects of exercise training upon endothelial function in patients with cardiovascular disease. 13, (1AD), 424–432.
[40]
Lundby, C. et al. 2017. Biology of VO                              max: looking under the physiology lamp. Acta Physiologica. 220, 2 (Jun. 2017), 218–228. DOI:https://doi.org/10.1111/apha.12827.
[41]
Maillet, M. et al. 2013. Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology. 14, 1 (Jan. 2013), 38–48. DOI:https://doi.org/10.1038/nrm3495.
[42]
Meeusen, R. et al. 2004. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. European Journal of Applied Physiology. 91, 2–3 (Mar. 2004), 140–146. DOI:https://doi.org/10.1007/s00421-003-0940-1.
[43]
Miyachi, M. et al. 1998. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiologica Scandinavica. 163, 1 (May 1998), 13–16. DOI:https://doi.org/10.1046/j.1365-201x.1998.0337f.x.
[44]
MURPHY, G. and NAGASE, H. 2008. Progress in matrix metalloproteinase research. Molecular Aspects of Medicine. 29, 5 (Oct. 2008), 290–308. DOI:https://doi.org/10.1016/j.mam.2008.05.002.
[45]
Ramey, D.W. 1999. How to Read a Scientific Paper. AAEP PROCEEDINGS.
[46]
Reid, M.B. 2005. Response of the ubiquitin-proteasome pathway to changes in muscle activity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 288, 6 (Jun. 2005), R1423–R1431. DOI:https://doi.org/10.1152/ajpregu.00545.2004.
[47]
Rowe, G.C. et al. 2014. Running Forward. Circulation. 129, 7 (Feb. 2014), 798–810. DOI:https://doi.org/10.1161/CIRCULATIONAHA.113.001590.
[48]
Spence, A.L. et al. 2013. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. The Journal of Physiology. 591, 5 (Mar. 2013), 1265–1275. DOI:https://doi.org/10.1113/jphysiol.2012.247387.
[49]
Tsintzas, O.K. et al. 1996. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. Journal of Applied Physiology. 81, 2 (Aug. 1996), 801–809. DOI:https://doi.org/10.1152/jappl.1996.81.2.801.
[50]
Walter, G. et al. 1997. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. American Journal of Physiology-Cell Physiology. 272, 2 (Feb. 1997), C525–C534. DOI:https://doi.org/10.1152/ajpcell.1997.272.2.C525.
[51]
Wilkins, B.J. et al. 2004. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research. 94, 1 (Jan. 2004), 110–118. DOI:https://doi.org/10.1161/01.RES.0000109415.17511.18.
[52]
Williams, P.E. and Goldspink, G. Connective tissue changes in immobilised muscle. 138, 2, 343–350.
[53]
Wisløff, U. 2002. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research. 54, 1 (Apr. 2002), 162–174. DOI:https://doi.org/10.1016/S0008-6363(01)00565-X.
[54]
Wisløff, U. et al. 2007. Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation. 115, 24 (Jun. 2007), 3086–3094. DOI:https://doi.org/10.1161/CIRCULATIONAHA.106.675041.