BAAR, KEITH. ‘Training for Endurance and Strength’. Medicine & Science in Sports & Exercise 38.11 (2006): 1939–1944. Web.
Baar, Keith, and D Grahame Hardie. ‘Small Molecules Can Have Big Effects on Endurance’. Nature Chemical Biology 4.10 (2008): 583–584. Web.
Barrès, Romain et al. ‘Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle’. Cell Metabolism 15.3 (2012): 405–411. Web.
Bogdanis, G C et al. ‘Recovery of Power Output and Muscle Metabolites Following 30 s of Maximal Sprint Cycling in Man.’ The Journal of Physiology 482.2 (1995): 467–480. Web.
Boluyt, Marvin O. et al. ‘Changes in the Rat Heart Proteome Induced by Exercise Training: Increased Abundance of Heat Shock Protein Hsp20’. PROTEOMICS 6.10 (2006): 3154–3169. Web.
BOOTH, F. W. et al. ‘Molecular and Cellular Adaptation of Muscle in Response to Physical Training’. Acta Physiologica Scandinavica 162.3 (1998): 343–350. Web.
Burniston, Jatin G. ‘Adaptation of the Rat Cardiac Proteome in Response to Intensity-Controlled Endurance Exercise’. PROTEOMICS 9.1 (2009): 106–115. Web.
---. ‘Changes in the Rat Skeletal Muscle Proteome Induced by Moderate-Intensity Endurance Exercise’. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1784.7–8 (2008): 1077–1086. Web.
Burstein, Brett, and Stanley Nattel. ‘Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation’. Journal of the American College of Cardiology 51.8 (2008): 802–809. Web.
Bye, Anja, Mette Langaas, et al. ‘Aerobic Capacity-Dependent Differences in Cardiac Gene Expression’. Physiological Genomics 33.1 (2008): 100–109. Web.
Bye, Anja, Morten A. Høydal, et al. ‘Gene Expression Profiling of Skeletal Muscle in Exercise-Trained and Sedentary Rats with Inborn High and Low VO’. Physiological Genomics 35.3 (2008): 213–221. Web.
Carè, Alessandra et al. ‘MicroRNA-133 Controls Cardiac Hypertrophy’. Nature Medicine 13.5 (2007): 613–618. Web.
Casey, A. et al. ‘Creatine Ingestion Favorably Affects Performance and Muscle Metabolism during Maximal Exercise in Humans’. American Journal of Physiology-Endocrinology and Metabolism 271.1 (1996): E31–E37. Web.
Chien, Kenneth R. ‘Molecular Medicine: MicroRNAs and the Tell-Tale Heart’. Nature 447.7143 (2007): 389–390. Web.
Creemers, Esther E. J. M. et al. ‘Deficiency of TIMP-1 Exacerbates LV Remodeling after  Myocardial Infarction in Mice’. American Journal of Physiology-Heart and Circulatory Physiology 284.1 (2003): H364–H371. Web.
Daniels, A. et al. ‘Connective Tissue Growth Factor and Cardiac Fibrosis’. Acta Physiologica 195.3 (2009): 321–338. Web.
Di Biase, Valentina, and Clara Franzini-Armstrong. ‘Evolution of Skeletal Type e–c Coupling’. The Journal of Cell Biology 171.4 (2005): 695–704. Web.
Diffee, Gary M. ‘Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training’. Exercise and Sport Sciences Reviews 32.3 (2004): 112–119. Web.
Eto, Yoko et al. ‘Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training’. Circulation 101.18 (2000): 2134–2137. Web.
Fernandes, Tiago et al. ‘Aerobic Exercise Training Promotes Physiological Cardiac Remodeling Involving a Set of microRNAs’. American Journal of Physiology-Heart and Circulatory Physiology 309.4 (2015): H543–H552. Web.
Hambrecht, R. et al. ‘Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase’. Circulation 107.25 (2003): 3152–3158. Web.
Haram, Per M., Ole J. Kemi, and Ulrik Wisloff. ‘Adaptation of Endothelium to Exercise Training: Insights from Experimental Studies’. 13 (1AD): 336–346. Web. <https://www.bioscience.org/2008/v13/af/2683/fulltext.htm>.
Haram, Per Magnus et al. ‘Time-Course of Endothelial Adaptation Following Acute and Regular Exercise’. European Journal of Cardiovascular Prevention & Rehabilitation 13.4 (2006): 585–591. Web.
Hawley, John A. et al. ‘Integrative Biology of Exercise’. Cell 159.4 (2014): 738–749. Web.
Hill, Maria, A. Wernig, and G. Goldspink. ‘Muscle Satellite (Stem) Cell Activation during Local Tissue Injury and Repair’. Journal of Anatomy 203.1 (2003): 89–99. Web.
Hsu, Chiao-Po et al. ‘Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair’. The Annals of Thoracic Surgery 86.4 (2008): 1243–1249. Web.
Iemitsu, M. et al. ‘Gene Expression Profiling of Exercise-Induced Cardiac Hypertrophy in Rats’. Acta Physiologica Scandinavica 185.4 (2005): 259–270. Web.
Iemitsu, Motoyuki et al. ‘Activation Pattern of MAPK Signaling in the Hearts of Trained and Untrained Rats Following a Single Bout of Exercise’. Journal of Applied Physiology 101.1 (2006): 151–163. Web.
Jørgensen, Sebastian B., Erik A. Richter, and Jørgen F. P. Wojtaszewski. ‘Role of AMPK in Skeletal Muscle Metabolic Regulation and Adaptation in Relation to Exercise’. The Journal of Physiology 574.1 (2006): 17–31. Web.
KEMI, O, M HOYDAL, et al. ‘Exercise Training Restores Aerobic Capacity and Energy Transfer Systems in Heart Failure Treated with Losartan’. Cardiovascular Research 76.1 (2007): 91–99. Web.
KEMI, O, P HARAM, et al. ‘Moderate vs. High Exercise Intensity: Differential Effects on Aerobic Fitness, Cardiomyocyte Contractility, and Endothelial Function’. Cardiovascular Research 67.1 (2005): 161–172. Web.
Kemi, O. J., and U. Wisløff. ‘Mechanisms of Exercise-Induced Improvements in the Contractile Apparatus of the Mammalian Myocardium’. Acta Physiologica 199.4 (2010): 425–439. Web.
Kemi, Ole J. et al. ‘Aerobic Interval Training Enhances Cardiomyocyte Contractility and Ca2+ Cycling by Phosphorylation of CaMKII and Thr-17 of Phospholamban’. Journal of Molecular and Cellular Cardiology 43.3 (2007): 354–361. Web.
Kemi, Ole Johan, Marcello Ceci, et al. ‘Activation or Inactivation of Cardiac Akt/mTOR Signaling Diverges Physiological from Pathological Hypertrophy’. Journal of Cellular Physiology 214.2 (2008): 316–321. Web.
Kemi, Ole Johan, Per Magnus Haram, et al. ‘Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining’. Circulation 109.23 (2004): 2897–2904. Web.
Kiens, Bente, and Erik A. Richter. ‘Utilization of Skeletal Muscle Triacylglycerol during Postexercise Recovery in Humans’. American Journal of Physiology-Endocrinology and Metabolism 275.2 (1998): E332–E337. Web.
Kong, Sek Won et al. ‘Genetic Expression Profiles during Physiological and Pathological Cardiac Hypertrophy and Heart Failure in Rats’. Physiological Genomics 21.1 (2005): 34–42. Web.
KOVANEN, VUOKKO, HARRI SUOMINEN, and EINO HEIKKINEN. ‘Connective Tissue of "fast” and "Slow” Skeletal Muscle in Rats…effects of Endurance Training’. Acta Physiologica Scandinavica 108.2 (1980): 173–180. Web.
Linke, Axel, Sandra Erbs, and Rainer Hambrecht. ‘Effects of Exercise Training upon Endothelial Function in Patients with Cardiovascular Disease’. 13 (1AD): 424–432. Web. <https://www.bioscience.org/2008/v13/af/2689/fulltext.htm>.
Lundby, C., D. Montero, and M. Joyner. ‘Biology of VO                              Max: Looking under the Physiology Lamp’. Acta Physiologica 220.2 (2017): 218–228. Web.
Maillet, Marjorie, Jop H. van Berlo, and Jeffery D. Molkentin. ‘Molecular Basis of Physiological Heart Growth: Fundamental Concepts and New Players’. Nature Reviews Molecular Cell Biology 14.1 (2013): 38–48. Web.
Meeusen, R. et al. ‘Hormonal Responses in Athletes: The Use of a Two Bout Exercise Protocol to Detect Subtle Differences in (over)Training Status’. European Journal of Applied Physiology 91.2–3 (2004): 140–146. Web.
Miyachi, M. et al. ‘Effects of Endurance Training on the Size and Blood Flow of the Arterial Conductance Vessels in Humans’. Acta Physiologica Scandinavica 163.1 (1998): 13–16. Web.
MURPHY, G, and H NAGASE. ‘Progress in Matrix Metalloproteinase Research’. Molecular Aspects of Medicine 29.5 (2008): 290–308. Web.
Ramey, David W. How to Read a Scientific Paper. Vol. 45. AAEP PROCEEDINGS, 1999. Web. <https://pdfs.semanticscholar.org/104b/3127547393d6b94a8641100e9c297d653f56.pdf>.
Reid, Michael B. ‘Response of the Ubiquitin-Proteasome Pathway to Changes in Muscle Activity’. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 288.6 (2005): R1423–R1431. Web.
Rowe, Glenn C., Adeel Safdar, and Zolt Arany. ‘Running Forward’. Circulation 129.7 (2014): 798–810. Web.
Spence, Angela L. et al. ‘A Prospective Randomized Longitudinal Study Involving 6 Months of Endurance or Resistance Exercise. Conduit Artery Adaptation in Humans’. The Journal of Physiology 591.5 (2013): 1265–1275. Web.
Tsintzas, O. K. et al. ‘Carbohydrate Ingestion and Single Muscle Fiber Glycogen Metabolism during Prolonged Running in Men’. Journal of Applied Physiology 81.2 (1996): 801–809. Web.
Walter, G. et al. ‘Noninvasive Measurement of Phosphocreatine Recovery Kinetics in Single Human Muscles’. American Journal of Physiology-Cell Physiology 272.2 (1997): C525–C534. Web.
Wilkins, Benjamin J. et al. ‘Calcineurin/NFAT Coupling Participates in Pathological, but Not Physiological, Cardiac Hypertrophy’. Circulation Research 94.1 (2004): 110–118. Web.
Williams, P E, and G Goldspink. ‘Connective Tissue Changes in Immobilised Muscle’. 138.2 343–350. Web. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1164074/>.
Wisløff, U. ‘Aerobic Exercise Reduces Cardiomyocyte Hypertrophy and Increases Contractility, Ca2+ Sensitivity and SERCA-2 in Rat after Myocardial Infarction’. Cardiovascular Research 54.1 (2002): 162–174. Web.
Wisløff, Ulrik et al. ‘Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients’. Circulation 115.24 (2007): 3086–3094. Web.