1.
Lundby C, Montero D, Joyner M. Biology of VO                              max: looking under the physiology lamp. Acta Physiologica. 2017;220(2):218-228. doi:10.1111/apha.12827
2.
Ramey DW. How to Read a Scientific Paper. Vol 45. AAEP PROCEEDINGS; 1999:280-284. https://pdfs.semanticscholar.org/104b/3127547393d6b94a8641100e9c297d653f56.pdf
3.
BAAR K. Training for Endurance and Strength. Medicine & Science in Sports & Exercise. 2006;38(11):1939-1944. doi:10.1249/01.mss.0000233799.62153.19
4.
Baar K, Hardie DG. Small molecules can have big effects on endurance. Nature Chemical Biology. 2008;4(10):583-584. doi:10.1038/nchembio1008-583
5.
Barrès R, Yan J, Egan B, et al. Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism. 2012;15(3):405-411. doi:10.1016/j.cmet.2012.01.001
6.
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine. 2007;13(5):613-618. doi:10.1038/nm1582
7.
Chien KR. Molecular medicine: MicroRNAs and the tell-tale heart. Nature. 2007;447(7143):389-390. doi:10.1038/447389a
8.
Eto Y, Yonekura K, Sonoda M, et al. Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training. Circulation. 2000;101(18):2134-2137. doi:10.1161/01.CIR.101.18.2134
9.
Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology. 2015;309(4):H543-H552. doi:10.1152/ajpheart.00899.2014
10.
Iemitsu M, Maeda S, Jesmin S, Otsuki T, Kasuya Y, Miyauchi T. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. Journal of Applied Physiology. 2006;101(1):151-163. doi:10.1152/japplphysiol.00392.2005
11.
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology. 2013;14(1):38-48. doi:10.1038/nrm3495
12.
Wilkins BJ, Dai YS, Bueno OF, et al. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research. 2004;94(1):110-118. doi:10.1161/01.RES.0000109415.17511.18
13.
Boluyt MO, Brevick JL, Rogers DS, Randall MJ, Scalia AF, Li ZB. Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. PROTEOMICS. 2006;6(10):3154-3169. doi:10.1002/pmic.200401356
14.
Burniston JG. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2008;1784(7-8):1077-1086. doi:10.1016/j.bbapap.2008.04.007
15.
Burniston JG. Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. PROTEOMICS. 2009;9(1):106-115. doi:10.1002/pmic.200800268
16.
Bye A, Langaas M, Høydal MA, et al. Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics. 2008;33(1):100-109. doi:10.1152/physiolgenomics.00269.2007
17.
Bye A, Høydal MA, Catalucci D, et al. Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO. Physiological Genomics. 2008;35(3):213-221. doi:10.1152/physiolgenomics.90282.2008
18.
Iemitsu M, Maeda S, Miyauchi T, Matsuda M, Tanaka H. Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiologica Scandinavica. 2005;185(4):259-270. doi:10.1111/j.1365-201X.2005.01494.x
19.
Kong SW, Bodyak N, Yue P, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics. 2005;21(1):34-42. doi:10.1152/physiolgenomics.00226.2004
20.
Diffee GM. Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training. Exercise and Sport Sciences Reviews. 2004;32(3):112-119. doi:10.1097/00003677-200407000-00007
21.
Kemi OJ, Haram PM, Wisløff U, Ellingsen Ø. Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining. Circulation. 2004;109(23):2897-2904. doi:10.1161/01.CIR.0000129308.04757.72
22.
KEMI O, HARAM P, LOENNECHEN J, et al. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research. 2005;67(1):161-172. doi:10.1016/j.cardiores.2005.03.010
23.
Kemi OJ, Ellingsen Ø, Ceci M, et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology. 2007;43(3):354-361. doi:10.1016/j.yjmcc.2007.06.013
24.
Kemi OJ, Ceci M, Wisloff U, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of Cellular Physiology. 2008;214(2):316-321. doi:10.1002/jcp.21197
25.
Kemi OJ, Wisløff U. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiologica. 2010;199(4):425-439. doi:10.1111/j.1748-1716.2010.02132.x
26.
Hsu CP, Huang CY, Wang JS, Sun PC, Shih CC. Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair. The Annals of Thoracic Surgery. 2008;86(4):1243-1249. doi:10.1016/j.athoracsur.2008.06.043
27.
Burstein B, Nattel S. Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology. 2008;51(8):802-809. doi:10.1016/j.jacc.2007.09.064
28.
KOVANEN V, SUOMINEN H, HEIKKINEN E. Connective tissue of "fast” and "slow” skeletal muscle in rats…effects of endurance training. Acta Physiologica Scandinavica. 1980;108(2):173-180. doi:10.1111/j.1748-1716.1980.tb06515.x
29.
Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiologica. 2009;195(3):321-338. doi:10.1111/j.1748-1716.2008.01936.x
30.
Creemers EEJM, Davis JN, Parkhurst AM, et al. Deficiency of TIMP-1 exacerbates LV remodeling after  myocardial infarction in mice. American Journal of Physiology-Heart and Circulatory Physiology. 2003;284(1):H364-H371. doi:10.1152/ajpheart.00511.2002
31.
Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. 138(2):343-350. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1164074/
32.
MURPHY G, NAGASE H. Progress in matrix metalloproteinase research. Molecular Aspects of Medicine. 2008;29(5):290-308. doi:10.1016/j.mam.2008.05.002
33.
Di Biase V, Franzini-Armstrong C. Evolution of skeletal type e–c coupling. The Journal of Cell Biology. 2005;171(4):695-704. doi:10.1083/jcb.200503077
34.
Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. European Journal of Applied Physiology. 2004;91(2-3):140-146. doi:10.1007/s00421-003-0940-1
35.
BOOTH FW, TSENG BS, FLUCK M, CARSON JA. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiologica Scandinavica. 1998;162(3):343-350. doi:10.1046/j.1365-201X.1998.0326e.x
36.
Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. Journal of Anatomy. 2003;203(1):89-99. doi:10.1046/j.1469-7580.2003.00195.x
37.
Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2005;288(6):R1423-R1431. doi:10.1152/ajpregu.00545.2004
38.
Hambrecht R, Adams V, Erbs S, et al. Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase. Circulation. 2003;107(25):3152-3158. doi:10.1161/01.CIR.0000074229.93804.5C
39.
Haram PM, Adams V, Kemi OJ, et al. Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention & Rehabilitation. 2006;13(4):585-591. doi:10.1097/01.hjr.0000198920.57685.76
40.
Haram PM, Kemi OJ, Wisloff U. Adaptation of endothelium to exercise training: Insights from experimental studies. 1AD;13:336-346. https://www.bioscience.org/2008/v13/af/2683/fulltext.htm
41.
Linke A, Erbs S, Hambrecht R. Effects of exercise training upon endothelial function in patients with cardiovascular disease. 1AD;13:424-432. https://www.bioscience.org/2008/v13/af/2689/fulltext.htm
42.
Miyachi M, Iemitsu M, Okutsu M, Onodera S. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiologica Scandinavica. 1998;163(1):13-16. doi:10.1046/j.1365-201x.1998.0337f.x
43.
Spence AL, Carter HH, Naylor LH, Green DJ. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. The Journal of Physiology. 2013;591(5):1265-1275. doi:10.1113/jphysiol.2012.247387
44.
Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology. 1995;482(2):467-480. doi:10.1113/jphysiol.1995.sp020533
45.
Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. American Journal of Physiology-Endocrinology and Metabolism. 1996;271(1):E31-E37. doi:10.1152/ajpendo.1996.271.1.E31
46.
Jørgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. The Journal of Physiology. 2006;574(1):17-31. doi:10.1113/jphysiol.2006.109942
47.
Kiens B, Richter EA. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology-Endocrinology and Metabolism. 1998;275(2):E332-E337. doi:10.1152/ajpendo.1998.275.2.E332
48.
Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. Journal of Applied Physiology. 1996;81(2):801-809. doi:10.1152/jappl.1996.81.2.801
49.
Walter G, Vandenborne K, McCully KK, Leigh JS. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. American Journal of Physiology-Cell Physiology. 1997;272(2):C525-C534. doi:10.1152/ajpcell.1997.272.2.C525
50.
KEMI O, HOYDAL M, HARAM P, et al. Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovascular Research. 2007;76(1):91-99. doi:10.1016/j.cardiores.2007.06.008
51.
Wisløff U. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research. 2002;54(1):162-174. doi:10.1016/S0008-6363(01)00565-X
52.
Wisløff U, Støylen A, Loennechen JP, et al. Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation. 2007;115(24):3086-3094. doi:10.1161/CIRCULATIONAHA.106.675041
53.
Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative Biology of Exercise. Cell. 2014;159(4):738-749. doi:10.1016/j.cell.2014.10.029
54.
Rowe GC, Safdar A, Arany Z. Running Forward. Circulation. 2014;129(7):798-810. doi:10.1161/CIRCULATIONAHA.113.001590