1
Lundby C, Montero D, Joyner M. Biology of VO                              max: looking under the physiology lamp. Acta Physiologica 2017;220:218–28. doi:10.1111/apha.12827
2
Ramey DW. How to Read a Scientific Paper. AAEP PROCEEDINGS 1999. https://pdfs.semanticscholar.org/104b/3127547393d6b94a8641100e9c297d653f56.pdf
3
BAAR K. Training for Endurance and Strength. Medicine & Science in Sports & Exercise 2006;38:1939–44. doi:10.1249/01.mss.0000233799.62153.19
4
Baar K, Hardie DG. Small molecules can have big effects on endurance. Nature Chemical Biology 2008;4:583–4. doi:10.1038/nchembio1008-583
5
Barrès R, Yan J, Egan B, et al. Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism 2012;15:405–11. doi:10.1016/j.cmet.2012.01.001
6
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine 2007;13:613–8. doi:10.1038/nm1582
7
Chien KR. Molecular medicine: MicroRNAs and the tell-tale heart. Nature 2007;447:389–90. doi:10.1038/447389a
8
Eto Y, Yonekura K, Sonoda M, et al. Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training. Circulation 2000;101:2134–7. doi:10.1161/01.CIR.101.18.2134
9
Fernandes T, Baraúna VG, Negrão CE, et al. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology 2015;309:H543–52. doi:10.1152/ajpheart.00899.2014
10
Iemitsu M, Maeda S, Jesmin S, et al. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. Journal of Applied Physiology 2006;101:151–63. doi:10.1152/japplphysiol.00392.2005
11
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology 2013;14:38–48. doi:10.1038/nrm3495
12
Wilkins BJ, Dai Y-S, Bueno OF, et al. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research 2004;94:110–8. doi:10.1161/01.RES.0000109415.17511.18
13
Boluyt MO, Brevick JL, Rogers DS, et al. Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. PROTEOMICS 2006;6:3154–69. doi:10.1002/pmic.200401356
14
Burniston JG. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2008;1784:1077–86. doi:10.1016/j.bbapap.2008.04.007
15
Burniston JG. Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. PROTEOMICS 2009;9:106–15. doi:10.1002/pmic.200800268
16
Bye A, Langaas M, Høydal MA, et al. Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics 2008;33:100–9. doi:10.1152/physiolgenomics.00269.2007
17
Bye A, Høydal MA, Catalucci D, et al. Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO. Physiological Genomics 2008;35:213–21. doi:10.1152/physiolgenomics.90282.2008
18
Iemitsu M, Maeda S, Miyauchi T, et al. Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiologica Scandinavica 2005;185:259–70. doi:10.1111/j.1365-201X.2005.01494.x
19
Kong SW, Bodyak N, Yue P, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics 2005;21:34–42. doi:10.1152/physiolgenomics.00226.2004
20
Diffee GM. Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training. Exercise and Sport Sciences Reviews 2004;32:112–9. doi:10.1097/00003677-200407000-00007
21
Kemi OJ, Haram PM, Wisløff U, et al. Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining. Circulation 2004;109:2897–904. doi:10.1161/01.CIR.0000129308.04757.72
22
KEMI O, HARAM P, LOENNECHEN J, et al. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research 2005;67:161–72. doi:10.1016/j.cardiores.2005.03.010
23
Kemi OJ, Ellingsen Ø, Ceci M, et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology 2007;43:354–61. doi:10.1016/j.yjmcc.2007.06.013
24
Kemi OJ, Ceci M, Wisloff U, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of Cellular Physiology 2008;214:316–21. doi:10.1002/jcp.21197
25
Kemi OJ, Wisløff U. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiologica 2010;199:425–39. doi:10.1111/j.1748-1716.2010.02132.x
26
Hsu C-P, Huang C-Y, Wang J-S, et al. Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair. The Annals of Thoracic Surgery 2008;86:1243–9. doi:10.1016/j.athoracsur.2008.06.043
27
Burstein B, Nattel S. Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology 2008;51:802–9. doi:10.1016/j.jacc.2007.09.064
28
KOVANEN V, SUOMINEN H, HEIKKINEN E. Connective tissue of "fast” and "slow” skeletal muscle in rats…effects of endurance training. Acta Physiologica Scandinavica 1980;108:173–80. doi:10.1111/j.1748-1716.1980.tb06515.x
29
Daniels A, van Bilsen M, Goldschmeding R, et al. Connective tissue growth factor and cardiac fibrosis. Acta Physiologica 2009;195:321–38. doi:10.1111/j.1748-1716.2008.01936.x
30
Creemers EEJM, Davis JN, Parkhurst AM, et al. Deficiency of TIMP-1 exacerbates LV remodeling after  myocardial infarction in mice. American Journal of Physiology-Heart and Circulatory Physiology 2003;284:H364–71. doi:10.1152/ajpheart.00511.2002
31
Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. ;138:343–50.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1164074/
32
MURPHY G, NAGASE H. Progress in matrix metalloproteinase research. Molecular Aspects of Medicine 2008;29:290–308. doi:10.1016/j.mam.2008.05.002
33
Di Biase V, Franzini-Armstrong C. Evolution of skeletal type e–c coupling. The Journal of Cell Biology 2005;171:695–704. doi:10.1083/jcb.200503077
34
Meeusen R, Piacentini MF, Busschaert B, et al. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. European Journal of Applied Physiology 2004;91:140–6. doi:10.1007/s00421-003-0940-1
35
BOOTH FW, TSENG BS, FLUCK M, et al. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiologica Scandinavica 1998;162:343–50. doi:10.1046/j.1365-201X.1998.0326e.x
36
Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. Journal of Anatomy 2003;203:89–99. doi:10.1046/j.1469-7580.2003.00195.x
37
Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2005;288:R1423–31. doi:10.1152/ajpregu.00545.2004
38
Hambrecht R, Adams V, Erbs S, et al. Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase. Circulation 2003;107:3152–8. doi:10.1161/01.CIR.0000074229.93804.5C
39
Haram PM, Adams V, Kemi OJ, et al. Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention & Rehabilitation 2006;13:585–91. doi:10.1097/01.hjr.0000198920.57685.76
40
Haram PM, Kemi OJ, Wisloff U. Adaptation of endothelium to exercise training: Insights from experimental studies. 1AD;13:336–46.https://www.bioscience.org/2008/v13/af/2683/fulltext.htm
41
Linke A, Erbs S, Hambrecht R. Effects of exercise training upon endothelial function in patients with cardiovascular disease. 1AD;13:424–32.https://www.bioscience.org/2008/v13/af/2689/fulltext.htm
42
Miyachi M, Iemitsu M, Okutsu M, et al. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiologica Scandinavica 1998;163:13–6. doi:10.1046/j.1365-201x.1998.0337f.x
43
Spence AL, Carter HH, Naylor LH, et al. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. The Journal of Physiology 2013;591:1265–75. doi:10.1113/jphysiol.2012.247387
44
Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology 1995;482:467–80. doi:10.1113/jphysiol.1995.sp020533
45
Casey A, Constantin-Teodosiu D, Howell S, et al. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. American Journal of Physiology-Endocrinology and Metabolism 1996;271:E31–7. doi:10.1152/ajpendo.1996.271.1.E31
46
Jørgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. The Journal of Physiology 2006;574:17–31. doi:10.1113/jphysiol.2006.109942
47
Kiens B, Richter EA. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology-Endocrinology and Metabolism 1998;275:E332–7. doi:10.1152/ajpendo.1998.275.2.E332
48
Tsintzas OK, Williams C, Boobis L, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. Journal of Applied Physiology 1996;81:801–9. doi:10.1152/jappl.1996.81.2.801
49
Walter G, Vandenborne K, McCully KK, et al. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. American Journal of Physiology-Cell Physiology 1997;272:C525–34. doi:10.1152/ajpcell.1997.272.2.C525
50
KEMI O, HOYDAL M, HARAM P, et al. Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovascular Research 2007;76:91–9. doi:10.1016/j.cardiores.2007.06.008
51
Wisløff U. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research 2002;54:162–74. doi:10.1016/S0008-6363(01)00565-X
52
Wisløff U, Støylen A, Loennechen JP, et al. Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation 2007;115:3086–94. doi:10.1161/CIRCULATIONAHA.106.675041
53
Hawley JA, Hargreaves M, Joyner MJ, et al. Integrative Biology of Exercise. Cell 2014;159:738–49. doi:10.1016/j.cell.2014.10.029
54
Rowe GC, Safdar A, Arany Z. Running Forward. Circulation 2014;129:798–810. doi:10.1161/CIRCULATIONAHA.113.001590