BAAR, K. (2006). Training for Endurance and Strength. Medicine & Science in Sports & Exercise, 38(11), 1939–1944. https://doi.org/10.1249/01.mss.0000233799.62153.19
Baar, K., & Hardie, D. G. (2008). Small molecules can have big effects on endurance. Nature Chemical Biology, 4(10), 583–584. https://doi.org/10.1038/nchembio1008-583
Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O’Gorman, D. J., & Zierath, J. R. (2012). Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism, 15(3), 405–411. https://doi.org/10.1016/j.cmet.2012.01.001
Bogdanis, G. C., Nevill, M. E., Boobis, L. H., Lakomy, H. K., & Nevill, A. M. (1995). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology, 482(2), 467–480. https://doi.org/10.1113/jphysiol.1995.sp020533
Boluyt, M. O., Brevick, J. L., Rogers, D. S., Randall, M. J., Scalia, A. F., & Li, Z. B. (2006). Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. PROTEOMICS, 6(10), 3154–3169. https://doi.org/10.1002/pmic.200401356
BOOTH, F. W., TSENG, B. S., FLUCK, M., & CARSON, J. A. (1998). Molecular and cellular adaptation of muscle in response to physical training. Acta Physiologica Scandinavica, 162(3), 343–350. https://doi.org/10.1046/j.1365-201X.1998.0326e.x
Burniston, J. G. (2008). Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(7–8), 1077–1086. https://doi.org/10.1016/j.bbapap.2008.04.007
Burniston, J. G. (2009). Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. PROTEOMICS, 9(1), 106–115. https://doi.org/10.1002/pmic.200800268
Burstein, B., & Nattel, S. (2008). Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51(8), 802–809. https://doi.org/10.1016/j.jacc.2007.09.064
Bye, A., Høydal, M. A., Catalucci, D., Langaas, M., Kemi, O. J., Beisvag, V., Koch, L. G., Britton, S. L., Ellingsen, Ø., & Wisløff, U. (2008). Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO. Physiological Genomics, 35(3), 213–221. https://doi.org/10.1152/physiolgenomics.90282.2008
Bye, A., Langaas, M., Høydal, M. A., Kemi, O. J., Heinrich, G., Koch, L. G., Britton, S. L., Najjar, S. M., Ellingsen, Ø., & Wisløff, U. (2008). Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics, 33(1), 100–109. https://doi.org/10.1152/physiolgenomics.00269.2007
Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.-L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V. G., Høydal, M., Autore, C., Russo, M. A., Dorn, G. W., Ellingsen, Ø., Ruiz-Lozano, P., Peterson, K. L., … Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618. https://doi.org/10.1038/nm1582
Casey, A., Constantin-Teodosiu, D., Howell, S., Hultman, E., & Greenhaff, P. L. (1996). Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 271(1), E31–E37. https://doi.org/10.1152/ajpendo.1996.271.1.E31
Chien, K. R. (2007). Molecular medicine: MicroRNAs and the tell-tale heart. Nature, 447(7143), 389–390. https://doi.org/10.1038/447389a
Creemers, E. E. J. M., Davis, J. N., Parkhurst, A. M., Leenders, P., Dowdy, K. B., Hapke, E., Hauet, A. M., Escobar, P. G., Cleutjens, J. P. M., Smits, J. F. M., Daemen, M. J. A. P., Zile, M. R., & Spinale, F. G. (2003). Deficiency of TIMP-1 exacerbates LV remodeling after  myocardial infarction in mice. American Journal of Physiology-Heart and Circulatory Physiology, 284(1), H364–H371. https://doi.org/10.1152/ajpheart.00511.2002
Daniels, A., van Bilsen, M., Goldschmeding, R., van der Vusse, G. J., & van Nieuwenhoven, F. A. (2009). Connective tissue growth factor and cardiac fibrosis. Acta Physiologica, 195(3), 321–338. https://doi.org/10.1111/j.1748-1716.2008.01936.x
Di Biase, V., & Franzini-Armstrong, C. (2005). Evolution of skeletal type e–c coupling. The Journal of Cell Biology, 171(4), 695–704. https://doi.org/10.1083/jcb.200503077
Diffee, G. M. (2004). Adaptation of Cardiac Myocyte Contractile Properties to Exercise Training. Exercise and Sport Sciences Reviews, 32(3), 112–119. https://doi.org/10.1097/00003677-200407000-00007
Eto, Y., Yonekura, K., Sonoda, M., Arai, N., Sata, M., Sugiura, S., Takenaka, K., Gualberto, A., Hixon, M. L., Wagner, M. W., & Aoyagi, T. (2000). Calcineurin Is Activated in Rat Hearts With Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training. Circulation, 101(18), 2134–2137. https://doi.org/10.1161/01.CIR.101.18.2134
Fernandes, T., Baraúna, V. G., Negrão, C. E., Phillips, M. I., & Oliveira, E. M. (2015). Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology, 309(4), H543–H552. https://doi.org/10.1152/ajpheart.00899.2014
Hambrecht, R., Adams, V., Erbs, S., Linke, A., Kränkel, N., Shu, Y., Baither, Y., Gielen, S., Thiele, H., Gummert, J. F., Mohr, F. W., & Schuler, G. (2003). Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase. Circulation, 107(25), 3152–3158. https://doi.org/10.1161/01.CIR.0000074229.93804.5C
Haram, P. M., Adams, V., Kemi, O. J., Brubakk, A. O., Hambrecht, R., Ellingsen, Ø., & Wisløff, U. (2006). Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention & Rehabilitation, 13(4), 585–591. https://doi.org/10.1097/01.hjr.0000198920.57685.76
Haram, P. M., Kemi, O. J., & Wisloff, U. (1 C.E.). Adaptation of endothelium to exercise training: Insights from experimental studies. 13, 336–346. https://www.bioscience.org/2008/v13/af/2683/fulltext.htm
Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative Biology of Exercise. Cell, 159(4), 738–749. https://doi.org/10.1016/j.cell.2014.10.029
Hill, M., Wernig, A., & Goldspink, G. (2003). Muscle satellite (stem) cell activation during local tissue injury and repair. Journal of Anatomy, 203(1), 89–99. https://doi.org/10.1046/j.1469-7580.2003.00195.x
Hsu, C.-P., Huang, C.-Y., Wang, J.-S., Sun, P.-C., & Shih, C.-C. (2008). Extracellular Matrix Remodeling Attenuated After Experimental Postinfarct Left Ventricular Aneurysm Repair. The Annals of Thoracic Surgery, 86(4), 1243–1249. https://doi.org/10.1016/j.athoracsur.2008.06.043
Iemitsu, M., Maeda, S., Jesmin, S., Otsuki, T., Kasuya, Y., & Miyauchi, T. (2006). Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. Journal of Applied Physiology, 101(1), 151–163. https://doi.org/10.1152/japplphysiol.00392.2005
Iemitsu, M., Maeda, S., Miyauchi, T., Matsuda, M., & Tanaka, H. (2005). Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiologica Scandinavica, 185(4), 259–270. https://doi.org/10.1111/j.1365-201X.2005.01494.x
Jørgensen, S. B., Richter, E. A., & Wojtaszewski, J. F. P. (2006). Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. The Journal of Physiology, 574(1), 17–31. https://doi.org/10.1113/jphysiol.2006.109942
KEMI, O., HARAM, P., LOENNECHEN, J., OSNES, J., SKOMEDAL, T., WISLOFF, U., & ELLINGSEN, O. (2005). Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research, 67(1), 161–172. https://doi.org/10.1016/j.cardiores.2005.03.010
KEMI, O., HOYDAL, M., HARAM, P., GARNIER, A., FORTIN, D., VENTURACLAPIER, R., & ELLINGSEN, O. (2007). Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovascular Research, 76(1), 91–99. https://doi.org/10.1016/j.cardiores.2007.06.008
Kemi, O. J., Ceci, M., Wisloff, U., Grimaldi, S., Gallo, P., Smith, G. L., Condorelli, G., & Ellingsen, O. (2008). Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of Cellular Physiology, 214(2), 316–321. https://doi.org/10.1002/jcp.21197
Kemi, O. J., Ellingsen, Ø., Ceci, M., Grimaldi, S., Smith, G. L., Condorelli, G., & Wisløff, U. (2007). Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology, 43(3), 354–361. https://doi.org/10.1016/j.yjmcc.2007.06.013
Kemi, O. J., Haram, P. M., Wisløff, U., & Ellingsen, Ø. (2004). Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining. Circulation, 109(23), 2897–2904. https://doi.org/10.1161/01.CIR.0000129308.04757.72
Kemi, O. J., & Wisløff, U. (2010). Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiologica, 199(4), 425–439. https://doi.org/10.1111/j.1748-1716.2010.02132.x
Kiens, B., & Richter, E. A. (1998). Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology-Endocrinology and Metabolism, 275(2), E332–E337. https://doi.org/10.1152/ajpendo.1998.275.2.E332
Kong, S. W., Bodyak, N., Yue, P., Liu, Z., Brown, J., Izumo, S., & Kang, P. M. (2005). Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics, 21(1), 34–42. https://doi.org/10.1152/physiolgenomics.00226.2004
KOVANEN, V., SUOMINEN, H., & HEIKKINEN, E. (1980). Connective tissue of "fast” and "slow” skeletal muscle in rats…effects of endurance training. Acta Physiologica Scandinavica, 108(2), 173–180. https://doi.org/10.1111/j.1748-1716.1980.tb06515.x
Linke, A., Erbs, S., & Hambrecht, R. (1 C.E.). Effects of exercise training upon endothelial function in patients with cardiovascular disease. 13, 424–432. https://www.bioscience.org/2008/v13/af/2689/fulltext.htm
Lundby, C., Montero, D., & Joyner, M. (2017). Biology of VO                              max: looking under the physiology lamp. Acta Physiologica, 220(2), 218–228. https://doi.org/10.1111/apha.12827
Maillet, M., van Berlo, J. H., & Molkentin, J. D. (2013). Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology, 14(1), 38–48. https://doi.org/10.1038/nrm3495
Meeusen, R., Piacentini, M. F., Busschaert, B., Buyse, L., De Schutter, G., & Stray-Gundersen, J. (2004). Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. European Journal of Applied Physiology, 91(2–3), 140–146. https://doi.org/10.1007/s00421-003-0940-1
Miyachi, M., Iemitsu, M., Okutsu, M., & Onodera, S. (1998). Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiologica Scandinavica, 163(1), 13–16. https://doi.org/10.1046/j.1365-201x.1998.0337f.x
MURPHY, G., & NAGASE, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290–308. https://doi.org/10.1016/j.mam.2008.05.002
Ramey, D. W. (1999). How to Read a Scientific Paper (Vol. 45, pp. 280–284). AAEP PROCEEDINGS. https://pdfs.semanticscholar.org/104b/3127547393d6b94a8641100e9c297d653f56.pdf
Reid, M. B. (2005). Response of the ubiquitin-proteasome pathway to changes in muscle activity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(6), R1423–R1431. https://doi.org/10.1152/ajpregu.00545.2004
Rowe, G. C., Safdar, A., & Arany, Z. (2014). Running Forward. Circulation, 129(7), 798–810. https://doi.org/10.1161/CIRCULATIONAHA.113.001590
Spence, A. L., Carter, H. H., Naylor, L. H., & Green, D. J. (2013). A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. The Journal of Physiology, 591(5), 1265–1275. https://doi.org/10.1113/jphysiol.2012.247387
Tsintzas, O. K., Williams, C., Boobis, L., & Greenhaff, P. (1996). Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. Journal of Applied Physiology, 81(2), 801–809. https://doi.org/10.1152/jappl.1996.81.2.801
Walter, G., Vandenborne, K., McCully, K. K., & Leigh, J. S. (1997). Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. American Journal of Physiology-Cell Physiology, 272(2), C525–C534. https://doi.org/10.1152/ajpcell.1997.272.2.C525
Wilkins, B. J., Dai, Y.-S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., Jones, F., Kimball, T. R., & Molkentin, J. D. (2004). Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 94(1), 110–118. https://doi.org/10.1161/01.RES.0000109415.17511.18
Williams, P. E., & Goldspink, G. (n.d.). Connective tissue changes in immobilised muscle. 138(2), 343–350. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1164074/
Wisløff, U. (2002). Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research, 54(1), 162–174. https://doi.org/10.1016/S0008-6363(01)00565-X
Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M., Tjønna, A. E., Helgerud, J., Slørdahl, S. A., Lee, S. J., Videm, V., Bye, A., Smith, G. L., Najjar, S. M., Ellingsen, Ø., & Skjærpe, T. (2007). Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation, 115(24), 3086–3094. https://doi.org/10.1161/CIRCULATIONAHA.106.675041