[1]
Arbore, G. et al. 2016. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 352, 6292 (Jun. 2016), aad1210–aad1210. DOI:https://doi.org/10.1126/science.aad1210.
[2]
Banchereau, J. et al. 2012. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nature Immunology. 13, 10 (Sep. 2012), 925–931. DOI:https://doi.org/10.1038/ni.2406.
[3]
Basu, R. et al. 2013. The Th17 family: flexibility follows function. Immunological Reviews. 252, 1 (Mar. 2013), 89–103. DOI:https://doi.org/10.1111/imr.12035.
[4]
Baumgarth, N. 2013. Innate-Like B Cells and Their Rules of Engagement. Crossroads Between Innate and Adaptive Immunity IV. P.D. Katsikis et al., eds. Springer New York. 57–66.
[5]
Bilate, A.M. and Lafaille, J.J. 2012. Induced CD4                              Foxp3                              Regulatory T Cells in Immune Tolerance. Annual Review of Immunology. 30, 1 (Apr. 2012), 733–758. DOI:https://doi.org/10.1146/annurev-immunol-020711-075043.
[6]
Braun, A. et al. 2011. Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nature Immunology. 12, 9 (Aug. 2011), 879–887. DOI:https://doi.org/10.1038/ni.2085.
[7]
Bravo-Blas, A. et al. 2016. Microbiota and arthritis. Current Opinion in Rheumatology. (Jan. 2016). DOI:https://doi.org/10.1097/BOR.0000000000000261.
[8]
Cerutti, A. et al. 2013. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature Reviews Immunology. 13, 2 (Jan. 2013), 118–132. DOI:https://doi.org/10.1038/nri3383.
[9]
Cerutti, A. et al. 2013. The B cell helper side of neutrophils. Journal of Leukocyte Biology. 94, 4 (Oct. 2013), 677–682. DOI:https://doi.org/10.1189/jlb.1112596.
[10]
Chu, H. et al. 2016. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 352, 6289 (May 2016), 1116–1120. DOI:https://doi.org/10.1126/science.aad9948.
[11]
Costello, E.K. et al. 2009. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science. 326, 5960 (Dec. 2009), 1694–1697. DOI:https://doi.org/10.1126/science.1177486.
[12]
Curotto de Lafaille, M.A. and Lafaille, J.J. 2009. Natural and Adaptive Foxp3+ Regulatory T Cells: More of the Same or a Division of Labor? Immunity. 30, 5 (May 2009), 626–635. DOI:https://doi.org/10.1016/j.immuni.2009.05.002.
[13]
Cyster, J.G. 2010. B cell follicles and antigen encounters of the third kind. Nature Immunology. 11, 11 (Nov. 2010), 989–996. DOI:https://doi.org/10.1038/ni.1946.
[14]
Duan, S. and Thomas, P.G. 2016. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Frontiers in Immunology. 7, (Feb. 2016). DOI:https://doi.org/10.3389/fimmu.2016.00025.
[15]
Durbin, R.K. et al. 2013. Interferon induction and function at the mucosal surface. Immunological Reviews. 255, 1 (Sep. 2013), 25–39. DOI:https://doi.org/10.1111/imr.12101.
[16]
Förster, R. et al. 2008. CCR7 and its ligands: balancing immunity and tolerance. Nature Reviews Immunology. 8, 5 (May 2008), 362–371. DOI:https://doi.org/10.1038/nri2297.
[17]
Garraud, O. et al. 2012. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunology. 13, 1 (2012). DOI:https://doi.org/10.1186/1471-2172-13-63.
[18]
Giltiay, N.V. et al. 2012. B-cell selection and the development of autoantibodies. Arthritis Research & Therapy. 14, Suppl 4 (2012). DOI:https://doi.org/10.1186/ar3918.
[19]
Jameson, S.C. and Masopust, D. 2009. Diversity in T Cell Memory: An Embarrassment of Riches. Immunity. 31, 6 (Dec. 2009), 859–871. DOI:https://doi.org/10.1016/j.immuni.2009.11.007.
[20]
Josefowicz, S.Z. et al. 2012. Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology. 30, 1 (Apr. 2012), 531–564. DOI:https://doi.org/10.1146/annurev.immunol.25.022106.141623.
[21]
Li, M.O. and Rudensky, A.Y. 2016. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology. 16, 4 (Mar. 2016), 220–233. DOI:https://doi.org/10.1038/nri.2016.26.
[22]
Liston, A. and Gray, D.H.D. 2014. Homeostatic control of regulatory T cell diversity. Nature Reviews Immunology. 14, 3 (Jan. 2014), 154–165. DOI:https://doi.org/10.1038/nri3605.
[23]
Mowat, A.McI. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology. 3, 4 (Apr. 2003), 331–341. DOI:https://doi.org/10.1038/nri1057.
[24]
Mueller, S.N. et al. 2013. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annual Review of Immunology. 31, 1 (Mar. 2013), 137–161. DOI:https://doi.org/10.1146/annurev-immunol-032712-095954.
[25]
Mueller, S.N. and Mackay, L.K. 2015. Tissue-resident memory T cells: local specialists in immune defence. Nature Reviews Immunology. 16, 2 (Dec. 2015), 79–89. DOI:https://doi.org/10.1038/nri.2015.3.
[26]
Murphy, K.M. and Stockinger, B. 2010. Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunology. 11, 8 (Aug. 2010), 674–680. DOI:https://doi.org/10.1038/ni.1899.
[27]
Nibbs, R.J.B. and Graham, G.J. 2013. Immune regulation by atypical chemokine receptors. Nature Reviews Immunology. 13, 11 (Oct. 2013), 815–829. DOI:https://doi.org/10.1038/nri3544.
[28]
Nierkens, S. et al. 2013. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends in Immunology. 34, 8 (Aug. 2013), 361–370. DOI:https://doi.org/10.1016/j.it.2013.02.007.
[29]
O’Shea, J.J. et al. 2013. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine. 368, 2 (Jan. 2013), 161–170. DOI:https://doi.org/10.1056/NEJMra1202117.
[30]
Pillai, S. and Cariappa, A. 2009. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews Immunology. 9, 11 (Nov. 2009), 767–777. DOI:https://doi.org/10.1038/nri2656.
[31]
Poon, I.K.H. et al. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology. 14, 3 (Jan. 2014), 166–180. DOI:https://doi.org/10.1038/nri3607.
[32]
Reiner, S.L. et al. 2007. Division of Labor with a Workforce of One: Challenges in Specifying Effector and Memory T Cell Fate. Science. 317, 5838 (Aug. 2007), 622–625. DOI:https://doi.org/10.1126/science.1143775.
[33]
Rosser, E.C. et al. 2014. Cellular targets of regulatory B cell-mediated suppression. Molecular Immunology. 62, 2 (Dec. 2014), 296–304. DOI:https://doi.org/10.1016/j.molimm.2014.01.014.
[34]
Sakaguchi, S. et al. 2010. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology. 10, 7 (Jul. 2010), 490–500. DOI:https://doi.org/10.1038/nri2785.
[35]
Sakaguchi, S. et al. 2013. The plasticity and stability of regulatory T cells. Nature Reviews Immunology. 13, 6 (May 2013), 461–467. DOI:https://doi.org/10.1038/nri3464.
[36]
Schmidt, S.V. et al. 2012. Regulatory dendritic cells: there is more than just immune activation. Frontiers in Immunology. 3, (2012). DOI:https://doi.org/10.3389/fimmu.2012.00274.
[37]
Schumann, K. et al. 2010. Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity. 32, 5 (May 2010), 703–713. DOI:https://doi.org/10.1016/j.immuni.2010.04.017.
[38]
Shaikh, S.R. et al. 2015. The effects of diet-induced obesity on B cell function. Clinical & Experimental Immunology. 179, 1 (Jan. 2015), 90–99. DOI:https://doi.org/10.1111/cei.12444.
[39]
Shevach, E.M. 2009. Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity. 30, 5 (May 2009), 636–645. DOI:https://doi.org/10.1016/j.immuni.2009.04.010.
[40]
Shih, H.-Y. et al. 2014. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews. 261, 1 (Sep. 2014), 23–49. DOI:https://doi.org/10.1111/imr.12208.
[41]
SpringerLink (Online service) 2014. Transcriptional control of lineage differentiation in immune cells. Springer.
[42]
Tanoue, T. et al. 2016. Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology. 16, 5 (Apr. 2016), 295–309. DOI:https://doi.org/10.1038/nri.2016.36.
[43]
Ulvmar, M.H. et al. 2014. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology. 15, 7 (May 2014), 623–630. DOI:https://doi.org/10.1038/ni.2889.
[44]
Vazquez, M.I. et al. 2015. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 74, 2 (Aug. 2015), 318–326. DOI:https://doi.org/10.1016/j.cyto.2015.02.007.
[45]
Vinuesa, C.G. et al. 2009. Dysregulation of germinal centres in autoimmune disease. Nature Reviews Immunology. 9, 12 (Dec. 2009), 845–857. DOI:https://doi.org/10.1038/nri2637.
[46]
Vinuesa, C.G. et al. 2010. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunological Reviews. 237, 1 (Aug. 2010), 72–89. DOI:https://doi.org/10.1111/j.1600-065X.2010.00937.x.
[47]
Weber, M. et al. 2013. Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science. 339, 6117 (Jan. 2013), 328–332. DOI:https://doi.org/10.1126/science.1228456.
[48]
Weiner, H.L. et al. 2011. Oral tolerance. Immunological Reviews. 241, 1 (May 2011), 241–259. DOI:https://doi.org/10.1111/j.1600-065X.2011.01017.x.
[49]
Wherry, E.J. 2011. T cell exhaustion. Nature Immunology. 131, 6 (Jun. 2011), 492–499. DOI:https://doi.org/10.1038/ni.2035.
[50]
Williams, M.A. and Bevan, M.J. 2007. Effector and Memory CTL Differentiation. Annual Review of Immunology. 25, 1 (Apr. 2007), 171–192. DOI:https://doi.org/10.1146/annurev.immunol.25.022106.141548.
[51]
Xing, Y. and Hogquist, K.A. 2012. T-Cell Tolerance: Central and Peripheral. Cold Spring Harbor Perspectives in Biology. 4, 6 (Jun. 2012), a006957–a006957. DOI:https://doi.org/10.1101/cshperspect.a006957.
[52]
Yamane, H. and Paul, W.E. 2012. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology. 13, 11 (Oct. 2012), 1037–1044. DOI:https://doi.org/10.1038/ni.2431.
[53]
Yamane, H. and Paul, W.E. 2012. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology. 13, 11 (Oct. 2012), 1037–1044. DOI:https://doi.org/10.1038/ni.2431.
[54]
Yamane, H. and Paul, W.E. 2013. Early signaling events that underlie fate decisions of naive CD4                              T cells toward distinct T-helper cell subsets. Immunological Reviews. 252, 1 (Mar. 2013), 12–23. DOI:https://doi.org/10.1111/imr.12032.
[55]
Yamane, H. and Paul, W.E. 2012. Memory CD4+ T Cells: fate determination, positive feedback and plasticity. Cellular and Molecular Life Sciences. 69, 10 (May 2012), 1577–1583. DOI:https://doi.org/10.1007/s00018-012-0966-9.
[56]
Yu, D. and Vinuesa, C.G. 2010. The elusive identity of T follicular helper cells. Trends in Immunology. 31, 10 (Oct. 2010), 377–383. DOI:https://doi.org/10.1016/j.it.2010.07.001.
[57]
Zhou, L. et al. 2009. Plasticity of CD4+ T Cell Lineage Differentiation. Immunity. 30, 5 (May 2009), 646–655. DOI:https://doi.org/10.1016/j.immuni.2009.05.001.
[58]
Zhu, J. et al. 2010. Differentiation of Effector CD4 T Cell Populations. Annual Review of Immunology. 28, 1 (Mar. 2010), 445–489. DOI:https://doi.org/10.1146/annurev-immunol-030409-101212.
[59]
ORIGINS OF CD4  EFFECTOR AND CENTRAL MEMORY T CELLS. Nature immunology. 12, 6.