[1]
M. A. Williams and M. J. Bevan, ‘Effector and Memory CTL Differentiation’, Annual Review of Immunology, vol. 25, no. 1, pp. 171–192, Apr. 2007, doi: 10.1146/annurev.immunol.25.022106.141548.
[2]
S. Nierkens, J. Tel, E. Janssen, and G. J. Adema, ‘Antigen cross-presentation by dendritic cell subsets: one general or all sergeants?’, Trends in Immunology, vol. 34, no. 8, pp. 361–370, Aug. 2013, doi: 10.1016/j.it.2013.02.007.
[3]
S. Duan and P. G. Thomas, ‘Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection’, Frontiers in Immunology, vol. 7, Feb. 2016, doi: 10.3389/fimmu.2016.00025.
[4]
J. Zhu, H. Yamane, and W. E. Paul, ‘Differentiation of Effector CD4 T Cell Populations’, Annual Review of Immunology, vol. 28, no. 1, pp. 445–489, Mar. 2010, doi: 10.1146/annurev-immunol-030409-101212.
[5]
K. M. Murphy and B. Stockinger, ‘Effector T cell plasticity: flexibility in the face of changing circumstances’, Nature Immunology, vol. 11, no. 8, pp. 674–680, Aug. 2010, doi: 10.1038/ni.1899.
[6]
H. Yamane and W. E. Paul, ‘Cytokines of the γc family control CD4+ T cell differentiation and function’, Nature Immunology, vol. 13, no. 11, pp. 1037–1044, Oct. 2012, doi: 10.1038/ni.2431.
[7]
G. Arbore et al., ‘T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells’, Science, vol. 352, no. 6292, pp. aad1210–aad1210, Jun. 2016, doi: 10.1126/science.aad1210.
[8]
C. G. Vinuesa, M. A. Linterman, C. C. Goodnow, and K. L. Randall, ‘T cells and follicular dendritic cells in germinal center B-cell formation and selection’, Immunological Reviews, vol. 237, no. 1, pp. 72–89, Aug. 2010, doi: 10.1111/j.1600-065X.2010.00937.x.
[9]
D. Yu and C. G. Vinuesa, ‘The elusive identity of T follicular helper cells’, Trends in Immunology, vol. 31, no. 10, pp. 377–383, Oct. 2010, doi: 10.1016/j.it.2010.07.001.
[10]
C. G. Vinuesa, I. Sanz, and M. C. Cook, ‘Dysregulation of germinal centres in autoimmune disease’, Nature Reviews Immunology, vol. 9, no. 12, pp. 845–857, Dec. 2009, doi: 10.1038/nri2637.
[11]
S. C. Jameson and D. Masopust, ‘Diversity in T Cell Memory: An Embarrassment of Riches’, Immunity, vol. 31, no. 6, pp. 859–871, Dec. 2009, doi: 10.1016/j.immuni.2009.11.007.
[12]
S. N. Mueller, T. Gebhardt, F. R. Carbone, and W. R. Heath, ‘Memory T Cell Subsets, Migration Patterns, and Tissue Residence’, Annual Review of Immunology, vol. 31, no. 1, pp. 137–161, Mar. 2013, doi: 10.1146/annurev-immunol-032712-095954.
[13]
‘ORIGINS OF CD4  EFFECTOR AND CENTRAL MEMORY T CELLS’, Nature immunology, vol. 12, no. 6 [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212218/
[14]
S. N. Mueller and L. K. Mackay, ‘Tissue-resident memory T cells: local specialists in immune defence’, Nature Reviews Immunology, vol. 16, no. 2, pp. 79–89, Dec. 2015, doi: 10.1038/nri.2015.3.
[15]
E. J. Wherry, ‘T cell exhaustion’, Nature Immunology, vol. 131, no. 6, pp. 492–499, Jun. 2011, doi: 10.1038/ni.2035.
[16]
S. L. Reiner, F. Sallusto, and A. Lanzavecchia, ‘Division of Labor with a Workforce of One: Challenges in Specifying Effector and Memory T Cell Fate’, Science, vol. 317, no. 5838, pp. 622–625, Aug. 2007, doi: 10.1126/science.1143775.
[17]
N. Baumgarth, ‘Innate-Like B Cells and Their Rules of Engagement’, in Crossroads Between Innate and Adaptive Immunity IV, vol. 785, P. D. Katsikis, S. P. Schoenberger, and B. Pulendran, Eds. New York, NY: Springer New York, 2013, pp. 57–66 [Online]. Available: http://link.springer.com/10.1007/978-1-4614-6217-0_7
[18]
E. C. Rosser, P. A. Blair, and C. Mauri, ‘Cellular targets of regulatory B cell-mediated suppression’, Molecular Immunology, vol. 62, no. 2, pp. 296–304, Dec. 2014, doi: 10.1016/j.molimm.2014.01.014.
[19]
A. Cerutti, M. Cols, and I. Puga, ‘Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes’, Nature Reviews Immunology, vol. 13, no. 2, pp. 118–132, Jan. 2013, doi: 10.1038/nri3383.
[20]
A. Cerutti, I. Puga, and G. Magri, ‘The B cell helper side of neutrophils’, Journal of Leukocyte Biology, vol. 94, no. 4, pp. 677–682, Oct. 2013, doi: 10.1189/jlb.1112596.
[21]
O. Garraud et al., ‘Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond’, BMC Immunology, vol. 13, no. 1, 2012, doi: 10.1186/1471-2172-13-63.
[22]
M. I. Vazquez, J. Catalan-Dibene, and A. Zlotnik, ‘B cells responses and cytokine production are regulated by their immune microenvironment’, Cytokine, vol. 74, no. 2, pp. 318–326, Aug. 2015, doi: 10.1016/j.cyto.2015.02.007.
[23]
S. Pillai and A. Cariappa, ‘The follicular versus marginal zone B lymphocyte cell fate decision’, Nature Reviews Immunology, vol. 9, no. 11, pp. 767–777, Nov. 2009, doi: 10.1038/nri2656.
[24]
N. V. Giltiay, C. P. Chappell, and E. A. Clark, ‘B-cell selection and the development of autoantibodies’, Arthritis Research & Therapy, vol. 14, no. Suppl 4, 2012, doi: 10.1186/ar3918.
[25]
S. R. Shaikh, K. M. Haas, M. A. Beck, and H. Teague, ‘The effects of diet-induced obesity on B cell function’, Clinical & Experimental Immunology, vol. 179, no. 1, pp. 90–99, Jan. 2015, doi: 10.1111/cei.12444.
[26]
H.-Y. Shih et al., ‘Transcriptional and epigenetic networks of helper T and innate lymphoid cells’, Immunological Reviews, vol. 261, no. 1, pp. 23–49, Sep. 2014, doi: 10.1111/imr.12208.
[27]
SpringerLink (Online service), Transcriptional control of lineage differentiation in immune cells, vol. volume 381. Cham: Springer, 2014 [Online]. Available: http://ezproxy.lib.gla.ac.uk/login?url=http://dx.doi.org/10.1007/978-3-319-07395-8
[28]
J. J. O’Shea, S. M. Holland, and L. M. Staudt, ‘JAKs and STATs in Immunity, Immunodeficiency, and Cancer’, New England Journal of Medicine, vol. 368, no. 2, pp. 161–170, Jan. 2013, doi: 10.1056/NEJMra1202117.
[29]
H. Yamane and W. E. Paul, ‘Early signaling events that underlie fate decisions of naive CD4                              T cells toward distinct T-helper cell subsets’, Immunological Reviews, vol. 252, no. 1, pp. 12–23, Mar. 2013, doi: 10.1111/imr.12032.
[30]
J. Banchereau, V. Pascual, and A. O’Garra, ‘From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines’, Nature Immunology, vol. 13, no. 10, pp. 925–931, Sep. 2012, doi: 10.1038/ni.2406.
[31]
R. Basu, R. D. Hatton, and C. T. Weaver, ‘The Th17 family: flexibility follows function’, Immunological Reviews, vol. 252, no. 1, pp. 89–103, Mar. 2013, doi: 10.1111/imr.12035.
[32]
H. Yamane and W. E. Paul, ‘Cytokines of the γc family control CD4+ T cell differentiation and function’, Nature Immunology, vol. 13, no. 11, pp. 1037–1044, Oct. 2012, doi: 10.1038/ni.2431.
[33]
R. K. Durbin, S. V. Kotenko, and J. E. Durbin, ‘Interferon induction and function at the mucosal surface’, Immunological Reviews, vol. 255, no. 1, pp. 25–39, Sep. 2013, doi: 10.1111/imr.12101.
[34]
H. Yamane and W. E. Paul, ‘Memory CD4+ T Cells: fate determination, positive feedback and plasticity’, Cellular and Molecular Life Sciences, vol. 69, no. 10, pp. 1577–1583, May 2012, doi: 10.1007/s00018-012-0966-9.
[35]
S. Z. Josefowicz, L.-F. Lu, and A. Y. Rudensky, ‘Regulatory T Cells: Mechanisms of Differentiation and Function’, Annual Review of Immunology, vol. 30, no. 1, pp. 531–564, Apr. 2012, doi: 10.1146/annurev.immunol.25.022106.141623.
[36]
S. Sakaguchi, M. Miyara, C. M. Costantino, and D. A. Hafler, ‘FOXP3+ regulatory T cells in the human immune system’, Nature Reviews Immunology, vol. 10, no. 7, pp. 490–500, Jul. 2010, doi: 10.1038/nri2785.
[37]
M. O. Li and A. Y. Rudensky, ‘T cell receptor signalling in the control of regulatory T cell differentiation and function’, Nature Reviews Immunology, vol. 16, no. 4, pp. 220–233, Mar. 2016, doi: 10.1038/nri.2016.26.
[38]
A. Liston and D. H. D. Gray, ‘Homeostatic control of regulatory T cell diversity’, Nature Reviews Immunology, vol. 14, no. 3, pp. 154–165, Jan. 2014, doi: 10.1038/nri3605.
[39]
L. Zhou, M. M. W. Chong, and D. R. Littman, ‘Plasticity of CD4+ T Cell Lineage Differentiation’, Immunity, vol. 30, no. 5, pp. 646–655, May 2009, doi: 10.1016/j.immuni.2009.05.001.
[40]
E. M. Shevach, ‘Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression’, Immunity, vol. 30, no. 5, pp. 636–645, May 2009, doi: 10.1016/j.immuni.2009.04.010.
[41]
M. A. Curotto de Lafaille and J. J. Lafaille, ‘Natural and Adaptive Foxp3+ Regulatory T Cells: More of the Same or a Division of Labor?’, Immunity, vol. 30, no. 5, pp. 626–635, May 2009, doi: 10.1016/j.immuni.2009.05.002.
[42]
S. Sakaguchi, D. A. A. Vignali, A. Y. Rudensky, R. E. Niec, and H. Waldmann, ‘The plasticity and stability of regulatory T cells’, Nature Reviews Immunology, vol. 13, no. 6, pp. 461–467, May 2013, doi: 10.1038/nri3464.
[43]
Y. Xing and K. A. Hogquist, ‘T-Cell Tolerance: Central and Peripheral’, Cold Spring Harbor Perspectives in Biology, vol. 4, no. 6, pp. a006957–a006957, Jun. 2012, doi: 10.1101/cshperspect.a006957.
[44]
A. M. Bilate and J. J. Lafaille, ‘Induced CD4                              Foxp3                              Regulatory T Cells in Immune Tolerance’, Annual Review of Immunology, vol. 30, no. 1, pp. 733–758, Apr. 2012, doi: 10.1146/annurev-immunol-020711-075043.
[45]
S. V. Schmidt, A. C. Nino-Castro, and J. L. Schultze, ‘Regulatory dendritic cells: there is more than just immune activation’, Frontiers in Immunology, vol. 3, 2012, doi: 10.3389/fimmu.2012.00274.
[46]
H. L. Weiner, A. P. da Cunha, F. Quintana, and H. Wu, ‘Oral tolerance’, Immunological Reviews, vol. 241, no. 1, pp. 241–259, May 2011, doi: 10.1111/j.1600-065X.2011.01017.x.
[47]
T. Tanoue, K. Atarashi, and K. Honda, ‘Development and maintenance of intestinal regulatory T cells’, Nature Reviews Immunology, vol. 16, no. 5, pp. 295–309, Apr. 2016, doi: 10.1038/nri.2016.36.
[48]
I. K. H. Poon, C. D. Lucas, A. G. Rossi, and K. S. Ravichandran, ‘Apoptotic cell clearance: basic biology and therapeutic potential’, Nature Reviews Immunology, vol. 14, no. 3, pp. 166–180, Jan. 2014, doi: 10.1038/nri3607.
[49]
E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, and R. Knight, ‘Bacterial Community Variation in Human Body Habitats Across Space and Time’, Science, vol. 326, no. 5960, pp. 1694–1697, Dec. 2009, doi: 10.1126/science.1177486.
[50]
A. Bravo-Blas, H. Wessel, and S. Milling, ‘Microbiota and arthritis’, Current Opinion in Rheumatology, Jan. 2016, doi: 10.1097/BOR.0000000000000261.
[51]
H. Chu et al., ‘Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease’, Science, vol. 352, no. 6289, pp. 1116–1120, May 2016, doi: 10.1126/science.aad9948.
[52]
A. McI. Mowat, ‘Anatomical basis of tolerance and immunity to intestinal antigens’, Nature Reviews Immunology, vol. 3, no. 4, pp. 331–341, Apr. 2003, doi: 10.1038/nri1057.
[53]
R. Förster, A. C. Davalos-Misslitz, and A. Rot, ‘CCR7 and its ligands: balancing immunity and tolerance’, Nature Reviews Immunology, vol. 8, no. 5, pp. 362–371, May 2008, doi: 10.1038/nri2297.
[54]
J. G. Cyster, ‘B cell follicles and antigen encounters of the third kind’, Nature Immunology, vol. 11, no. 11, pp. 989–996, Nov. 2010, doi: 10.1038/ni.1946.
[55]
K. Schumann et al., ‘Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells’, Immunity, vol. 32, no. 5, pp. 703–713, May 2010, doi: 10.1016/j.immuni.2010.04.017.
[56]
M. Weber et al., ‘Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients’, Science, vol. 339, no. 6117, pp. 328–332, Jan. 2013, doi: 10.1126/science.1228456.
[57]
M. H. Ulvmar et al., ‘The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes’, Nature Immunology, vol. 15, no. 7, pp. 623–630, May 2014, doi: 10.1038/ni.2889.
[58]
R. J. B. Nibbs and G. J. Graham, ‘Immune regulation by atypical chemokine receptors’, Nature Reviews Immunology, vol. 13, no. 11, pp. 815–829, Oct. 2013, doi: 10.1038/nri3544.
[59]
A. Braun et al., ‘Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration’, Nature Immunology, vol. 12, no. 9, pp. 879–887, Aug. 2011, doi: 10.1038/ni.2085.