1.
Williams MA, Bevan MJ. Effector and Memory CTL Differentiation. Annual Review of Immunology. 2007;25(1):171-192. doi:10.1146/annurev.immunol.25.022106.141548
2.
Nierkens S, Tel J, Janssen E, Adema GJ. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends in Immunology. 2013;34(8):361-370. doi:10.1016/j.it.2013.02.007
3.
Duan S, Thomas PG. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Frontiers in Immunology. 2016;7. doi:10.3389/fimmu.2016.00025
4.
Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell Populations. Annual Review of Immunology. 2010;28(1):445-489. doi:10.1146/annurev-immunol-030409-101212
5.
Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunology. 2010;11(8):674-680. doi:10.1038/ni.1899
6.
Yamane H, Paul WE. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology. 2012;13(11):1037-1044. doi:10.1038/ni.2431
7.
Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 2016;352(6292):aad1210-aad1210. doi:10.1126/science.aad1210
8.
Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunological Reviews. 2010;237(1):72-89. doi:10.1111/j.1600-065X.2010.00937.x
9.
Yu D, Vinuesa CG. The elusive identity of T follicular helper cells. Trends in Immunology. 2010;31(10):377-383. doi:10.1016/j.it.2010.07.001
10.
Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nature Reviews Immunology. 2009;9(12):845-857. doi:10.1038/nri2637
11.
Jameson SC, Masopust D. Diversity in T Cell Memory: An Embarrassment of Riches. Immunity. 2009;31(6):859-871. doi:10.1016/j.immuni.2009.11.007
12.
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annual Review of Immunology. 2013;31(1):137-161. doi:10.1146/annurev-immunol-032712-095954
13.
ORIGINS OF CD4 EFFECTOR AND CENTRAL MEMORY T CELLS. Nature immunology. 12(6). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212218/
14.
Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nature Reviews Immunology. 2015;16(2):79-89. doi:10.1038/nri.2015.3
15.
Wherry EJ. T cell exhaustion. Nature Immunology. 2011;131(6):492-499. doi:10.1038/ni.2035
16.
Reiner SL, Sallusto F, Lanzavecchia A. Division of Labor with a Workforce of One: Challenges in Specifying Effector and Memory T Cell Fate. Science. 2007;317(5838):622-625. doi:10.1126/science.1143775
17.
Baumgarth N. Innate-Like B Cells and Their Rules of Engagement. In: Katsikis PD, Schoenberger SP, Pulendran B, eds. Crossroads Between Innate and Adaptive Immunity IV. Vol 785. Springer New York; 2013:57-66. doi:10.1007/978-1-4614-6217-0_7
18.
Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Molecular Immunology. 2014;62(2):296-304. doi:10.1016/j.molimm.2014.01.014
19.
Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature Reviews Immunology. 2013;13(2):118-132. doi:10.1038/nri3383
20.
Cerutti A, Puga I, Magri G. The B cell helper side of neutrophils. Journal of Leukocyte Biology. 2013;94(4):677-682. doi:10.1189/jlb.1112596
21.
Garraud O, Borhis G, Badr G, et al. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunology. 2012;13(1). doi:10.1186/1471-2172-13-63
22.
Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74(2):318-326. doi:10.1016/j.cyto.2015.02.007
23.
Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews Immunology. 2009;9(11):767-777. doi:10.1038/nri2656
24.
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Research & Therapy. 2012;14(Suppl 4). doi:10.1186/ar3918
25.
Shaikh SR, Haas KM, Beck MA, Teague H. The effects of diet-induced obesity on B cell function. Clinical & Experimental Immunology. 2015;179(1):90-99. doi:10.1111/cei.12444
26.
Shih HY, Sciumè G, Poholek AC, et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews. 2014;261(1):23-49. doi:10.1111/imr.12208
27.
SpringerLink (Online service). Transcriptional Control of Lineage Differentiation in Immune Cells. Vol volume 381. (Ellmeier W, Taniuchi I, eds.). Springer; 2014. http://ezproxy.lib.gla.ac.uk/login?url=http://dx.doi.org/10.1007/978-3-319-07395-8
28.
O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine. 2013;368(2):161-170. doi:10.1056/NEJMra1202117
29.
Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4 T cells toward distinct T-helper cell subsets. Immunological Reviews. 2013;252(1):12-23. doi:10.1111/imr.12032
30.
Banchereau J, Pascual V, O’Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nature Immunology. 2012;13(10):925-931. doi:10.1038/ni.2406
31.
Basu R, Hatton RD, Weaver CT. The Th17 family: flexibility follows function. Immunological Reviews. 2013;252(1):89-103. doi:10.1111/imr.12035
32.
Yamane H, Paul WE. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology. 2012;13(11):1037-1044. doi:10.1038/ni.2431
33.
Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunological Reviews. 2013;255(1):25-39. doi:10.1111/imr.12101
34.
Yamane H, Paul WE. Memory CD4+ T Cells: fate determination, positive feedback and plasticity. Cellular and Molecular Life Sciences. 2012;69(10):1577-1583. doi:10.1007/s00018-012-0966-9
35.
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology. 2012;30(1):531-564. doi:10.1146/annurev.immunol.25.022106.141623
36.
Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology. 2010;10(7):490-500. doi:10.1038/nri2785
37.
Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology. 2016;16(4):220-233. doi:10.1038/nri.2016.26
38.
Liston A, Gray DHD. Homeostatic control of regulatory T cell diversity. Nature Reviews Immunology. 2014;14(3):154-165. doi:10.1038/nri3605
39.
Zhou L, Chong MMW, Littman DR. Plasticity of CD4+ T Cell Lineage Differentiation. Immunity. 2009;30(5):646-655. doi:10.1016/j.immuni.2009.05.001
40.
Shevach EM. Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity. 2009;30(5):636-645. doi:10.1016/j.immuni.2009.04.010
41.
Curotto de Lafaille MA, Lafaille JJ. Natural and Adaptive Foxp3+ Regulatory T Cells: More of the Same or a Division of Labor? Immunity. 2009;30(5):626-635. doi:10.1016/j.immuni.2009.05.002
42.
Sakaguchi S, Vignali DAA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nature Reviews Immunology. 2013;13(6):461-467. doi:10.1038/nri3464
43.
Xing Y, Hogquist KA. T-Cell Tolerance: Central and Peripheral. Cold Spring Harbor Perspectives in Biology. 2012;4(6):a006957-a006957. doi:10.1101/cshperspect.a006957
44.
Bilate AM, Lafaille JJ. Induced CD4 Foxp3 Regulatory T Cells in Immune Tolerance. Annual Review of Immunology. 2012;30(1):733-758. doi:10.1146/annurev-immunol-020711-075043
45.
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Frontiers in Immunology. 2012;3. doi:10.3389/fimmu.2012.00274
46.
Weiner HL, da Cunha AP, Quintana F, Wu H. Oral tolerance. Immunological Reviews. 2011;241(1):241-259. doi:10.1111/j.1600-065X.2011.01017.x
47.
Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology. 2016;16(5):295-309. doi:10.1038/nri.2016.36
48.
Poon IKH, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology. 2014;14(3):166-180. doi:10.1038/nri3607
49.
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science. 2009;326(5960):1694-1697. doi:10.1126/science.1177486
50.
Bravo-Blas A, Wessel H, Milling S. Microbiota and arthritis. Current Opinion in Rheumatology. Published online January 2016. doi:10.1097/BOR.0000000000000261
51.
Chu H, Khosravi A, Kusumawardhani IP, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352(6289):1116-1120. doi:10.1126/science.aad9948
52.
Mowat AMcI. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology. 2003;3(4):331-341. doi:10.1038/nri1057
53.
Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nature Reviews Immunology. 2008;8(5):362-371. doi:10.1038/nri2297
54.
Cyster JG. B cell follicles and antigen encounters of the third kind. Nature Immunology. 2010;11(11):989-996. doi:10.1038/ni.1946
55.
Schumann K, Lämmermann T, Bruckner M, et al. Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity. 2010;32(5):703-713. doi:10.1016/j.immuni.2010.04.017
56.
Weber M, Hauschild R, Schwarz J, et al. Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science. 2013;339(6117):328-332. doi:10.1126/science.1228456
57.
Ulvmar MH, Werth K, Braun A, et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology. 2014;15(7):623-630. doi:10.1038/ni.2889
58.
Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nature Reviews Immunology. 2013;13(11):815-829. doi:10.1038/nri3544
59.
Braun A, Worbs T, Moschovakis GL, et al. Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nature Immunology. 2011;12(9):879-887. doi:10.1038/ni.2085