1
Williams MA, Bevan MJ. Effector and Memory CTL Differentiation. Annual Review of Immunology 2007;25:171–92. doi:10.1146/annurev.immunol.25.022106.141548
2
Nierkens S, Tel J, Janssen E, et al. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends in Immunology 2013;34:361–70. doi:10.1016/j.it.2013.02.007
3
Duan S, Thomas PG. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Frontiers in Immunology 2016;7. doi:10.3389/fimmu.2016.00025
4
Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell Populations. Annual Review of Immunology 2010;28:445–89. doi:10.1146/annurev-immunol-030409-101212
5
Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunology 2010;11:674–80. doi:10.1038/ni.1899
6
Yamane H, Paul WE. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology 2012;13:1037–44. doi:10.1038/ni.2431
7
Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 2016;352:aad1210–aad1210. doi:10.1126/science.aad1210
8
Vinuesa CG, Linterman MA, Goodnow CC, et al. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunological Reviews 2010;237:72–89. doi:10.1111/j.1600-065X.2010.00937.x
9
Yu D, Vinuesa CG. The elusive identity of T follicular helper cells. Trends in Immunology 2010;31:377–83. doi:10.1016/j.it.2010.07.001
10
Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nature Reviews Immunology 2009;9:845–57. doi:10.1038/nri2637
11
Jameson SC, Masopust D. Diversity in T Cell Memory: An Embarrassment of Riches. Immunity 2009;31:859–71. doi:10.1016/j.immuni.2009.11.007
12
Mueller SN, Gebhardt T, Carbone FR, et al. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annual Review of Immunology 2013;31:137–61. doi:10.1146/annurev-immunol-032712-095954
13
ORIGINS OF CD4 EFFECTOR AND CENTRAL MEMORY T CELLS. Nature immunology;12.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212218/
14
Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nature Reviews Immunology 2015;16:79–89. doi:10.1038/nri.2015.3
15
Wherry EJ. T cell exhaustion. Nature Immunology 2011;131:492–9. doi:10.1038/ni.2035
16
Reiner SL, Sallusto F, Lanzavecchia A. Division of Labor with a Workforce of One: Challenges in Specifying Effector and Memory T Cell Fate. Science 2007;317:622–5. doi:10.1126/science.1143775
17
Baumgarth N. Innate-Like B Cells and Their Rules of Engagement. In: Katsikis PD, Schoenberger SP, Pulendran B, eds. Crossroads Between Innate and Adaptive Immunity IV. New York, NY: : Springer New York 2013. 57–66. doi:10.1007/978-1-4614-6217-0_7
18
Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Molecular Immunology 2014;62:296–304. doi:10.1016/j.molimm.2014.01.014
19
Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature Reviews Immunology 2013;13:118–32. doi:10.1038/nri3383
20
Cerutti A, Puga I, Magri G. The B cell helper side of neutrophils. Journal of Leukocyte Biology 2013;94:677–82. doi:10.1189/jlb.1112596
21
Garraud O, Borhis G, Badr G, et al. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunology 2012;13. doi:10.1186/1471-2172-13-63
22
Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015;74:318–26. doi:10.1016/j.cyto.2015.02.007
23
Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews Immunology 2009;9:767–77. doi:10.1038/nri2656
24
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Research & Therapy 2012;14. doi:10.1186/ar3918
25
Shaikh SR, Haas KM, Beck MA, et al. The effects of diet-induced obesity on B cell function. Clinical & Experimental Immunology 2015;179:90–9. doi:10.1111/cei.12444
26
Shih H-Y, Sciumè G, Poholek AC, et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews 2014;261:23–49. doi:10.1111/imr.12208
27
SpringerLink (Online service). Transcriptional control of lineage differentiation in immune cells. Cham: : Springer 2014. http://ezproxy.lib.gla.ac.uk/login?url=http://dx.doi.org/10.1007/978-3-319-07395-8
28
O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine 2013;368:161–70. doi:10.1056/NEJMra1202117
29
Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4 T cells toward distinct T-helper cell subsets. Immunological Reviews 2013;252:12–23. doi:10.1111/imr.12032
30
Banchereau J, Pascual V, O’Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nature Immunology 2012;13:925–31. doi:10.1038/ni.2406
31
Basu R, Hatton RD, Weaver CT. The Th17 family: flexibility follows function. Immunological Reviews 2013;252:89–103. doi:10.1111/imr.12035
32
Yamane H, Paul WE. Cytokines of the γc family control CD4+ T cell differentiation and function. Nature Immunology 2012;13:1037–44. doi:10.1038/ni.2431
33
Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunological Reviews 2013;255:25–39. doi:10.1111/imr.12101
34
Yamane H, Paul WE. Memory CD4+ T Cells: fate determination, positive feedback and plasticity. Cellular and Molecular Life Sciences 2012;69:1577–83. doi:10.1007/s00018-012-0966-9
35
Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology 2012;30:531–64. doi:10.1146/annurev.immunol.25.022106.141623
36
Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology 2010;10:490–500. doi:10.1038/nri2785
37
Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology 2016;16:220–33. doi:10.1038/nri.2016.26
38
Liston A, Gray DHD. Homeostatic control of regulatory T cell diversity. Nature Reviews Immunology 2014;14:154–65. doi:10.1038/nri3605
39
Zhou L, Chong MMW, Littman DR. Plasticity of CD4+ T Cell Lineage Differentiation. Immunity 2009;30:646–55. doi:10.1016/j.immuni.2009.05.001
40
Shevach EM. Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity 2009;30:636–45. doi:10.1016/j.immuni.2009.04.010
41
Curotto de Lafaille MA, Lafaille JJ. Natural and Adaptive Foxp3+ Regulatory T Cells: More of the Same or a Division of Labor? Immunity 2009;30:626–35. doi:10.1016/j.immuni.2009.05.002
42
Sakaguchi S, Vignali DAA, Rudensky AY, et al. The plasticity and stability of regulatory T cells. Nature Reviews Immunology 2013;13:461–7. doi:10.1038/nri3464
43
Xing Y, Hogquist KA. T-Cell Tolerance: Central and Peripheral. Cold Spring Harbor Perspectives in Biology 2012;4:a006957–a006957. doi:10.1101/cshperspect.a006957
44
Bilate AM, Lafaille JJ. Induced CD4 Foxp3 Regulatory T Cells in Immune Tolerance. Annual Review of Immunology 2012;30:733–58. doi:10.1146/annurev-immunol-020711-075043
45
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Frontiers in Immunology 2012;3. doi:10.3389/fimmu.2012.00274
46
Weiner HL, da Cunha AP, Quintana F, et al. Oral tolerance. Immunological Reviews 2011;241:241–59. doi:10.1111/j.1600-065X.2011.01017.x
47
Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology 2016;16:295–309. doi:10.1038/nri.2016.36
48
Poon IKH, Lucas CD, Rossi AG, et al. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology 2014;14:166–80. doi:10.1038/nri3607
49
Costello EK, Lauber CL, Hamady M, et al. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009;326:1694–7. doi:10.1126/science.1177486
50
Bravo-Blas A, Wessel H, Milling S. Microbiota and arthritis. Current Opinion in Rheumatology Published Online First: January 2016. doi:10.1097/BOR.0000000000000261
51
Chu H, Khosravi A, Kusumawardhani IP, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 2016;352:1116–20. doi:10.1126/science.aad9948
52
Mowat AMcI. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology 2003;3:331–41. doi:10.1038/nri1057
53
Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nature Reviews Immunology 2008;8:362–71. doi:10.1038/nri2297
54
Cyster JG. B cell follicles and antigen encounters of the third kind. Nature Immunology 2010;11:989–96. doi:10.1038/ni.1946
55
Schumann K, Lämmermann T, Bruckner M, et al. Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity 2010;32:703–13. doi:10.1016/j.immuni.2010.04.017
56
Weber M, Hauschild R, Schwarz J, et al. Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science 2013;339:328–32. doi:10.1126/science.1228456
57
Ulvmar MH, Werth K, Braun A, et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology 2014;15:623–30. doi:10.1038/ni.2889
58
Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nature Reviews Immunology 2013;13:815–29. doi:10.1038/nri3544
59
Braun A, Worbs T, Moschovakis GL, et al. Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nature Immunology 2011;12:879–87. doi:10.1038/ni.2085