[1]
Abe, N. et al. 2015. Deconvolving the Recognition of DNA Shape from Sequence. Cell. 161, 2 (Apr. 2015), 307–318. DOI:https://doi.org/10.1016/j.cell.2015.02.008.
[2]
Adli, M. 2018. The CRISPR tool kit for genome editing and beyond. Nature Communications. 9, 1 (Dec. 2018). DOI:https://doi.org/10.1038/s41467-018-04252-2.
[3]
Alberts, B. 2015. Molecular biology of the cell. Garland Science, Taylor and Francis Group.
[4]
Bogdanove, A.J. et al. 2018. Engineering altered protein–DNA recognition specificity. Nucleic Acids Research. 46, 10 (Jun. 2018), 4845–4871. DOI:https://doi.org/10.1093/nar/gky289.
[5]
Calladine, C.R. 2004. 1. Understanding DNA: the molecule & how it works. Academic.
[6]
Cejka, P. 2017. Biochemistry: Complex assistance for DNA invasion. Nature. (Oct. 2017). DOI:https://doi.org/10.1038/nature24149.
[7]
Chandrasekaran, A.R. et al. 2016. 5. Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem. 17, 12 (Jun. 2016), 1081–1089. DOI:https://doi.org/10.1002/cbic.201600038.
[8]
Chen, S.H. et al. 2013. New Mechanistic and Functional Insights into DNA Topoisomerases. Annual Review of Biochemistry. 82, 1 (Jun. 2013), 139–170. DOI:https://doi.org/10.1146/annurev-biochem-061809-100002.
[9]
Clapier, C.R. et al. 2017. 16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology. 18, 7 (May 2017), 407–422. DOI:https://doi.org/10.1038/nrm.2017.26.
[10]
Deindl, S. et al. 2013. ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell. 152, 3 (Jan. 2013), 442–452. DOI:https://doi.org/10.1016/j.cell.2012.12.040.
[11]
Doublié, S. and Zahn, K.E. 2014. Structural insights into eukaryotic DNA replication. Frontiers in Microbiology. 5, (Aug. 2014). DOI:https://doi.org/10.3389/fmicb.2014.00444.
[12]
Gilbert, N. and Allan, J. 2014. Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development. 25, (Apr. 2014), 15–21. DOI:https://doi.org/10.1016/j.gde.2013.10.013.
[13]
Goodarzi, A.A. and Jeggo, P.A. 2013. 25. The Repair and Signaling Responses to DNA Double-Strand Breaks. Adv Genet. 82, (2013), 1–45. DOI:https://doi.org/10.1016/B978-0-12-407676-1.00001-9.
[14]
Graham, J.E. et al. 2017. Independent and Stochastic Action of DNA Polymerases in the Replisome. Cell. 169, 7 (Jun. 2017), 1201-1213.e17. DOI:https://doi.org/10.1016/j.cell.2017.05.041.
[15]
Hänsel-Hertsch, R. et al. 2017. 4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nature Reviews Molecular Cell Biology. 18, 5 (Feb. 2017), 279–284. DOI:https://doi.org/10.1038/nrm.2017.3.
[16]
Hille, F. et al. 2018. The Biology of CRISPR-Cas: Backward and Forward. Cell. 172, 6 (Mar. 2018), 1239–1259. DOI:https://doi.org/10.1016/j.cell.2017.11.032.
[17]
Jia, R. et al. 2017. Novel insights into chromosomal conformations in cancer. Molecular Cancer. 16, 1 (Dec. 2017). DOI:https://doi.org/10.1186/s12943-017-0741-5.
[18]
Kaniecki, K. et al. 2017. A change of view: homologous recombination at single-molecule resolution. Nature Reviews Genetics. 19, 4 (Dec. 2017), 191–207. DOI:https://doi.org/10.1038/nrg.2017.92.
[19]
Krebs, J.E. et al. 2018. Lewin’s genes XII. Jones & Bartlett Learning.
[20]
Ledford, H. 2017. Five big mysteries about CRISPR’s origins. Nature. 541, 7637 (Jan. 2017), 280–282. DOI:https://doi.org/10.1038/541280a.
[21]
Lelli, K.M. et al. 2012. 14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation. Annual Review of Genetics. 46, 1 (Dec. 2012), 43–68. DOI:https://doi.org/10.1146/annurev-genet-110711-155437.
[22]
Lesbats, P. et al. 2016. 23. Retroviral DNA Integration. Chemical Reviews. 116, 20 (Oct. 2016), 12730–12757. DOI:https://doi.org/10.1021/acs.chemrev.6b00125.
[23]
Liu, D. et al. 2017. 24. DNA mismatch repair and its many roles in eukaryotic cells. Mutation Research/Reviews in Mutation Research. 773, (Jul. 2017), 174–187. DOI:https://doi.org/10.1016/j.mrrev.2017.07.001.
[24]
Lodish, H.F. 2013. Molecular cell biology. W.H. Freeman and Company.
[25]
Ludmil B Alexandrov 2018. Understanding the origins of human cancer. Science. (2018).
[26]
Ludmil B Alexandrov et al. 2016. Mutational signatures associated with tobacco smoking in human cancer. Mutational signatures associated with tobacco smoking in human cancer. (2016).
[27]
M Ryan Corces et al. 2018. The chromatin accessibility landscape of primary human cancers. Science. (2018).
[28]
Marteijn, J.A. et al. 2014. 26. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology. 15, 7 (Jun. 2014), 465–481. DOI:https://doi.org/10.1038/nrm3822.
[29]
Modrich, P. 2016. Mechanisms in                              and Human Mismatch Repair (Nobel Lecture). Angewandte Chemie International Edition. 55, 30 (Jul. 2016), 8490–8501. DOI:https://doi.org/10.1002/anie.201601412.
[30]
Montaño, S.P. and Rice, P.A. 2011. Moving DNA around: DNA transposition and retroviral integration. Current Opinion in Structural Biology. 21, 3 (Jun. 2011), 370–378. DOI:https://doi.org/10.1016/j.sbi.2011.03.004.
[31]
Nelson, H.C.M. et al. 1987. 3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications. Nature. 330, 6145 (Nov. 1987), 221–226.
[32]
Nogales, E. et al. 2017. 12. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Annual Review of Biophysics. 46, 1 (May 2017), 59–83. DOI:https://doi.org/10.1146/annurev-biophys-070816-033751.
[33]
Nudler, E. 2009. 13. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annual Review of Biochemistry. 78, 1 (Jun. 2009), 335–361. DOI:https://doi.org/10.1146/annurev.biochem.76.052705.164655.
[34]
Pennisi, E. 2003. DNA’s Cast of Thousands. Science. 300, 5617 (Apr. 2003), 282–285. DOI:https://doi.org/10.1126/science.300.5617.282.
[35]
Pomerantz, R.T. and O’Donnell, M. 2007. 18. Replisome mechanics: insights into a twin DNA polymerase machine. Trends in Microbiology. 15, 4 (Apr. 2007), 156–164. DOI:https://doi.org/10.1016/j.tim.2007.02.007.
[36]
Renkawitz, J. et al. 2014. 19. Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology. 15, 6 (May 2014), 369–383. DOI:https://doi.org/10.1038/nrm3805.
[37]
Rice, P.A. et al. 1996. 7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn. Cell. 87, 7 (Dec. 1996), 1295–1306. DOI:https://doi.org/10.1016/S0092-8674(00)81824-3.
[38]
Rohs, R. et al. 2010. 6. Origins of Specificity in Protein-DNA Recognition. Annual Review of Biochemistry. 79, 1 (Jun. 2010), 233–269. DOI:https://doi.org/10.1146/annurev-biochem-060408-091030.
[39]
Rowley, M.J. and Corces, V.G. 2018. Organizational principles of 3D genome architecture. Nature Reviews Genetics. 19, 12 (Dec. 2018), 789–800. DOI:https://doi.org/10.1038/s41576-018-0060-8.
[40]
Schoeffler, A.J. and Berger, J.M. 2008. 11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics. 41, 01 (Feb. 2008). DOI:https://doi.org/10.1017/S003358350800468X.
[41]
Swinger, K.K. and Rice, P.A. 2004. IHF and HU: flexible architects of bent DNA. Current Opinion in Structural Biology. 14, 1 (Feb. 2004), 28–35. DOI:https://doi.org/10.1016/j.sbi.2003.12.003.
[42]
Terakawa, T. et al. 2017. The condensin complex is a mechanochemical motor that translocates along DNA. Science. 358, 6363 (Nov. 2017), 672–676. DOI:https://doi.org/10.1126/science.aan6516.
[43]
Tessarz, P. and Kouzarides, T. 2014. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 15, 11 (Oct. 2014), 703–708. DOI:https://doi.org/10.1038/nrm3890.
[44]
Uhlmann, F. 2016. 17. SMC complexes: from DNA to chromosomes. Nature Reviews Molecular Cell Biology. 17, 7 (Apr. 2016), 399–412. DOI:https://doi.org/10.1038/nrm.2016.30.
[45]
Watson, J.D. and Crick, F.H.C. 1953. 2. A Structure for Deoxyribose Nucleic Acid. (1953).
[46]
West, S.C. 2009. The search for a human Holliday junction resolvase. Biochemical Society Transactions. 37, 3 (Jun. 2009), 519–526. DOI:https://doi.org/10.1042/BST0370519.
[47]
Wigley, D.B. 2012. 21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nature Reviews Microbiology. 11, 1 (Dec. 2012), 9–13. DOI:https://doi.org/10.1038/nrmicro2917.
[48]
Wright, A.V. et al. 2017. Structures of the CRISPR genome integration complex. Science. 357, 6356 (Sep. 2017), 1113–1118. DOI:https://doi.org/10.1126/science.aao0679.
[49]
Zhao, W. et al. 2017. BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 550, 7676 (Oct. 2017), 360–365. DOI:https://doi.org/10.1038/nature24060.