1
Lodish HF. Molecular cell biology. 7th ed., international ed. New York: W.H. Freeman and Company 2013.
2
Alberts B. Molecular biology of the cell. Sixth edition. New York, NY: Garland Science, Taylor and Francis Group 2015.
3
Krebs JE, Goldstein ES, Kilpatrick ST. Lewin’s genes XII. 12th ed. Burlington, Mass: Jones & Bartlett Learning 2018.
4
Calladine CR. 1. Understanding DNA: the molecule & how it works. 3rd ed. San Diego, Calif: Academic 2004.
5
Watson JD, Crick FHC. 2. A Structure for Deoxyribose Nucleic Acid. Published Online First: 1953.
6
Nelson HCM, Finch JT, Luisi BF, et al. 3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications. Nature. 1987;330:221–6.
7
Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. 4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nature Reviews Molecular Cell Biology. 2017;18:279–84. doi: 10.1038/nrm.2017.3
8
Chandrasekaran AR, Anderson N, Kizer M, et al. 5. Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem. 2016;17:1081–9. doi: 10.1002/cbic.201600038
9
Rohs R, Jin X, West SM, et al. 6. Origins of Specificity in Protein-DNA Recognition. Annual Review of Biochemistry. 2010;79:233–69. doi: 10.1146/annurev-biochem-060408-091030
10
Rice PA, Yang S, Mizuuchi K, et al. 7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn. Cell. 1996;87:1295–306. doi: 10.1016/S0092-8674(00)81824-3
11
Bogdanove AJ, Bohm A, Miller JC, et al. Engineering altered protein–DNA recognition specificity. Nucleic Acids Research. 2018;46:4845–71. doi: 10.1093/nar/gky289
12
Hille F, Richter H, Wong SP, et al. The Biology of CRISPR-Cas: Backward and Forward. Cell. 2018;172:1239–59. doi: 10.1016/j.cell.2017.11.032
13
Gilbert N, Allan J. Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development. 2014;25:15–21. doi: 10.1016/j.gde.2013.10.013
14
Schoeffler AJ, Berger JM. 11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics. 2008;41. doi: 10.1017/S003358350800468X
15
Nogales E, Louder RK, He Y. 12. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Annual Review of Biophysics. 2017;46:59–83. doi: 10.1146/annurev-biophys-070816-033751
16
Nudler E. 13. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annual Review of Biochemistry. 2009;78:335–61. doi: 10.1146/annurev.biochem.76.052705.164655
17
Lelli KM, Slattery M, Mann RS. 14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation. Annual Review of Genetics. 2012;46:43–68. doi: 10.1146/annurev-genet-110711-155437
18
Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nature Reviews Genetics. 2018;19:789–800. doi: 10.1038/s41576-018-0060-8
19
Clapier CR, Iwasa J, Cairns BR, et al. 16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology. 2017;18:407–22. doi: 10.1038/nrm.2017.26
20
Uhlmann F. 17. SMC complexes: from DNA to chromosomes. Nature Reviews Molecular Cell Biology. 2016;17:399–412. doi: 10.1038/nrm.2016.30
21
Pomerantz RT, O’Donnell M. 18. Replisome mechanics: insights into a twin DNA polymerase machine. Trends in Microbiology. 2007;15:156–64. doi: 10.1016/j.tim.2007.02.007
22
Renkawitz J, Lademann CA, Jentsch S. 19. Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology. 2014;15:369–83. doi: 10.1038/nrm3805
23
Kaniecki K, De Tullio L, Greene EC. A change of view: homologous recombination at single-molecule resolution. Nature Reviews Genetics. 2017;19:191–207. doi: 10.1038/nrg.2017.92
24
Wigley DB. 21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nature Reviews Microbiology. 2012;11:9–13. doi: 10.1038/nrmicro2917
25
Lesbats P, Engelman AN, Cherepanov P. 23. Retroviral DNA Integration. Chemical Reviews. 2016;116:12730–57. doi: 10.1021/acs.chemrev.6b00125
26
Liu D, Keijzers G, Rasmussen LJ. 24. DNA mismatch repair and its many roles in eukaryotic cells. Mutation Research/Reviews in Mutation Research. 2017;773:174–87. doi: 10.1016/j.mrrev.2017.07.001
27
Goodarzi AA, Jeggo PA. 25. The Repair and Signaling Responses to DNA Double-Strand Breaks. Adv Genet. 2013;82:1–45. doi: 10.1016/B978-0-12-407676-1.00001-9
28
Marteijn JA, Lans H, Vermeulen W, et al. 26. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology. 2014;15:465–81. doi: 10.1038/nrm3822
29
Pennisi E. DNA’s Cast of Thousands. Science. 2003;300:282–5. doi: 10.1126/science.300.5617.282
30
Abe N, Dror I, Yang L, et al. Deconvolving the Recognition of DNA Shape from Sequence. Cell. 2015;161:307–18. doi: 10.1016/j.cell.2015.02.008
31
Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Current Opinion in Structural Biology. 2004;14:28–35. doi: 10.1016/j.sbi.2003.12.003
32
Ledford H. Five big mysteries about CRISPR’s origins. Nature. 2017;541:280–2. doi: 10.1038/541280a
33
Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications. 2018;9. doi: 10.1038/s41467-018-04252-2
34
Chen SH, Chan N-L, Hsieh T. New Mechanistic and Functional Insights into DNA Topoisomerases. Annual Review of Biochemistry. 2013;82:139–70. doi: 10.1146/annurev-biochem-061809-100002
35
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014;15:703–8. doi: 10.1038/nrm3890
36
Doublié S, Zahn KE. Structural insights into eukaryotic DNA replication. Frontiers in Microbiology. 2014;5. doi: 10.3389/fmicb.2014.00444
37
West SC. The search for a human Holliday junction resolvase. Biochemical Society Transactions. 2009;37:519–26. doi: 10.1042/BST0370519
38
Montaño SP, Rice PA. Moving DNA around: DNA transposition and retroviral integration. Current Opinion in Structural Biology. 2011;21:370–8. doi: 10.1016/j.sbi.2011.03.004
39
Modrich P. Mechanisms in                              and Human Mismatch Repair (Nobel Lecture). Angewandte Chemie International Edition. 2016;55:8490–501. doi: 10.1002/anie.201601412
40
Deindl S, Hwang WL, Hota SK, et al. ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell. 2013;152:442–52. doi: 10.1016/j.cell.2012.12.040
41
Graham JE, Marians KJ, Kowalczykowski SC. Independent and Stochastic Action of DNA Polymerases in the Replisome. Cell. 2017;169:1201-1213.e17. doi: 10.1016/j.cell.2017.05.041
42
Terakawa T, Bisht S, Eeftens JM, et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science. 2017;358:672–6. doi: 10.1126/science.aan6516
43
Jia R, Chai P, Zhang H, et al. Novel insights into chromosomal conformations in cancer. Molecular Cancer. 2017;16. doi: 10.1186/s12943-017-0741-5
44
M Ryan Corces et al. The chromatin accessibility landscape of primary human cancers. Science. Published Online First: 2018.
45
Wright AV, Liu J-J, Knott GJ, et al. Structures of the CRISPR genome integration complex. Science. 2017;357:1113–8. doi: 10.1126/science.aao0679
46
Ludmil B Alexandrov et al. Mutational signatures associated with tobacco smoking in human cancer. Mutational signatures associated with tobacco smoking in human cancer. Published Online First: 2016.
47
Ludmil B Alexandrov. Understanding the origins of human cancer. Science. Published Online First: 2018.
48
Zhao W, Steinfeld JB, Liang F, et al. BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017;550:360–5. doi: 10.1038/nature24060
49
Cejka P. Biochemistry: Complex assistance for DNA invasion. Nature. Published Online First: 4 October 2017. doi: 10.1038/nature24149