Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., Rohs, R., & Mann, R. S. (2015). Deconvolving the Recognition of DNA Shape from Sequence. Cell, 161(2), 307–318. https://doi.org/10.1016/j.cell.2015.02.008
Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04252-2
Alberts, B. (2015). Molecular biology of the cell (Sixth edition). Garland Science, Taylor and Francis Group.
Bogdanove, A. J., Bohm, A., Miller, J. C., Morgan, R. D., & Stoddard, B. L. (2018). Engineering altered protein–DNA recognition specificity. Nucleic Acids Research, 46(10), 4845–4871. https://doi.org/10.1093/nar/gky289
Calladine, C. R. (2004). 1. Understanding DNA: the molecule & how it works (3rd ed). Academic.
Cejka, P. (2017). Biochemistry: Complex assistance for DNA invasion. Nature. https://doi.org/10.1038/nature24149
Chandrasekaran, A. R., Anderson, N., Kizer, M., Halvorsen, K., & Wang, X. (2016). 5. Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem, 17(12), 1081–1089. https://doi.org/10.1002/cbic.201600038
Chen, S. H., Chan, N.-L., & Hsieh, T. (2013). New Mechanistic and Functional Insights into DNA Topoisomerases. Annual Review of Biochemistry, 82(1), 139–170. https://doi.org/10.1146/annurev-biochem-061809-100002
Clapier, C. R., Iwasa, J., Cairns, B. R., & Peterson, C. L. (2017). 16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology, 18(7), 407–422. https://doi.org/10.1038/nrm.2017.26
Deindl, S., Hwang, W. L., Hota, S. K., Blosser, T. R., Prasad, P., Bartholomew, B., & Zhuang, X. (2013). ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell, 152(3), 442–452. https://doi.org/10.1016/j.cell.2012.12.040
Doublié, S., & Zahn, K. E. (2014). Structural insights into eukaryotic DNA replication. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00444
Gilbert, N., & Allan, J. (2014). Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development, 25, 15–21. https://doi.org/10.1016/j.gde.2013.10.013
Goodarzi, A. A., & Jeggo, P. A. (2013). 25. The Repair and Signaling Responses to DNA Double-Strand Breaks. Adv Genet, 82, 1–45. https://doi.org/10.1016/B978-0-12-407676-1.00001-9
Graham, J. E., Marians, K. J., & Kowalczykowski, S. C. (2017). Independent and Stochastic Action of DNA Polymerases in the Replisome. Cell, 169(7), 1201-1213.e17. https://doi.org/10.1016/j.cell.2017.05.041
Hänsel-Hertsch, R., Di Antonio, M., & Balasubramanian, S. (2017). 4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nature Reviews Molecular Cell Biology, 18(5), 279–284. https://doi.org/10.1038/nrm.2017.3
Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S., & Charpentier, E. (2018). The Biology of CRISPR-Cas: Backward and Forward. Cell, 172(6), 1239–1259. https://doi.org/10.1016/j.cell.2017.11.032
Jia, R., Chai, P., Zhang, H., & Fan, X. (2017). Novel insights into chromosomal conformations in cancer. Molecular Cancer, 16(1). https://doi.org/10.1186/s12943-017-0741-5
Kaniecki, K., De Tullio, L., & Greene, E. C. (2017). A change of view: homologous recombination at single-molecule resolution. Nature Reviews Genetics, 19(4), 191–207. https://doi.org/10.1038/nrg.2017.92
Krebs, J. E., Goldstein, E. S., & Kilpatrick, S. T. (2018). Lewin’s genes XII (12th ed). Jones & Bartlett Learning.
Ledford, H. (2017). Five big mysteries about CRISPR’s origins. Nature, 541(7637), 280–282. https://doi.org/10.1038/541280a
Lelli, K. M., Slattery, M., & Mann, R. S. (2012). 14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation. Annual Review of Genetics, 46(1), 43–68. https://doi.org/10.1146/annurev-genet-110711-155437
Lesbats, P., Engelman, A. N., & Cherepanov, P. (2016). 23. Retroviral DNA Integration. Chemical Reviews, 116(20), 12730–12757. https://doi.org/10.1021/acs.chemrev.6b00125
Liu, D., Keijzers, G., & Rasmussen, L. J. (2017). 24. DNA mismatch repair and its many roles in eukaryotic cells. Mutation Research/Reviews in Mutation Research, 773, 174–187. https://doi.org/10.1016/j.mrrev.2017.07.001
Lodish, H. F. (2013). Molecular cell biology (7th ed., international ed). W.H. Freeman and Company.
Ludmil B Alexandrov. (2018a). Understanding the origins of human cancer. Science. http://science.sciencemag.org/content/350/6265/1175.1.long
Ludmil B Alexandrov et al. (2016). Mutational signatures associated with tobacco smoking in human cancer. Mutational Signatures Associated with Tobacco Smoking in Human Cancer. http://ezproxy.lib.gla.ac.uk/login?url=http://science.sciencemag.org/content/354/6312/618.long
M Ryan Corces et al. (2018b). The chromatin accessibility landscape of primary human cancers. Science. http://science.sciencemag.org/content/362/6413/eaav1898.long
Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. J. (2014). 26. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 15(7), 465–481. https://doi.org/10.1038/nrm3822
Modrich, P. (2016). Mechanisms in                              and Human Mismatch Repair (Nobel Lecture). Angewandte Chemie International Edition, 55(30), 8490–8501. https://doi.org/10.1002/anie.201601412
Montaño, S. P., & Rice, P. A. (2011). Moving DNA around: DNA transposition and retroviral integration. Current Opinion in Structural Biology, 21(3), 370–378. https://doi.org/10.1016/j.sbi.2011.03.004
Nelson, H. C. M., Finch, J. T., Luisi, B. F., & Klug, A. (1987). 3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications. Nature, 330(6145), 221–226. http://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/nature/journal/v330/n6145/abs/330221a0.html
Nogales, E., Louder, R. K., & He, Y. (2017). 12. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Annual Review of Biophysics, 46(1), 59–83. https://doi.org/10.1146/annurev-biophys-070816-033751
Nudler, E. (2009). 13. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annual Review of Biochemistry, 78(1), 335–361. https://doi.org/10.1146/annurev.biochem.76.052705.164655
Pennisi, E. (2003). DNA’s Cast of Thousands. Science, 300(5617), 282–285. https://doi.org/10.1126/science.300.5617.282
Pomerantz, R. T., & O’Donnell, M. (2007). 18. Replisome mechanics: insights into a twin DNA polymerase machine. Trends in Microbiology, 15(4), 156–164. https://doi.org/10.1016/j.tim.2007.02.007
Renkawitz, J., Lademann, C. A., & Jentsch, S. (2014). 19. Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology, 15(6), 369–383. https://doi.org/10.1038/nrm3805
Rice, P. A., Yang, S., Mizuuchi, K., & Nash, H. A. (1996). 7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn. Cell, 87(7), 1295–1306. https://doi.org/10.1016/S0092-8674(00)81824-3
Rohs, R., Jin, X., West, S. M., Joshi, R., Honig, B., & Mann, R. S. (2010). 6. Origins of Specificity in Protein-DNA Recognition. Annual Review of Biochemistry, 79(1), 233–269. https://doi.org/10.1146/annurev-biochem-060408-091030
Rowley, M. J., & Corces, V. G. (2018). Organizational principles of 3D genome architecture. Nature Reviews Genetics, 19(12), 789–800. https://doi.org/10.1038/s41576-018-0060-8
Schoeffler, A. J., & Berger, J. M. (2008). 11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics, 41(01). https://doi.org/10.1017/S003358350800468X
Swinger, K. K., & Rice, P. A. (2004). IHF and HU: flexible architects of bent DNA. Current Opinion in Structural Biology, 14(1), 28–35. https://doi.org/10.1016/j.sbi.2003.12.003
Terakawa, T., Bisht, S., Eeftens, J. M., Dekker, C., Haering, C. H., & Greene, E. C. (2017). The condensin complex is a mechanochemical motor that translocates along DNA. Science, 358(6363), 672–676. https://doi.org/10.1126/science.aan6516
Tessarz, P., & Kouzarides, T. (2014). Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology, 15(11), 703–708. https://doi.org/10.1038/nrm3890
Uhlmann, F. (2016). 17. SMC complexes: from DNA to chromosomes. Nature Reviews Molecular Cell Biology, 17(7), 399–412. https://doi.org/10.1038/nrm.2016.30
Watson, J. D., & Crick, F. H. C. (1953). 2. A Structure for Deoxyribose Nucleic Acid. https://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/articles/171737a0.pdf
West, S. C. (2009). The search for a human Holliday junction resolvase. Biochemical Society Transactions, 37(3), 519–526. https://doi.org/10.1042/BST0370519
Wigley, D. B. (2012). 21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nature Reviews Microbiology, 11(1), 9–13. https://doi.org/10.1038/nrmicro2917
Wright, A. V., Liu, J.-J., Knott, G. J., Doxzen, K. W., Nogales, E., & Doudna, J. A. (2017). Structures of the CRISPR genome integration complex. Science, 357(6356), 1113–1118. https://doi.org/10.1126/science.aao0679
Zhao, W., Steinfeld, J. B., Liang, F., Chen, X., Maranon, D. G., Jian Ma, C., Kwon, Y., Rao, T., Wang, W., Sheng, C., Song, X., Deng, Y., Jimenez-Sainz, J., Lu, L., Jensen, R. B., Xiong, Y., Kupfer, G. M., Wiese, C., Greene, E. C., & Sung, P. (2017). BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature, 550(7676), 360–365. https://doi.org/10.1038/nature24060