1.
Lodish HF. Molecular Cell Biology. 7th ed., international ed. W.H. Freeman and Company; 2013.
2.
Alberts B. Molecular Biology of the Cell. Sixth edition. Garland Science, Taylor and Francis Group; 2015.
3.
Krebs JE, Goldstein ES, Kilpatrick ST. Lewin’s Genes XII. 12th ed. Jones & Bartlett Learning; 2018.
4.
Calladine CR. 1. Understanding DNA: The Molecule & How It Works. 3rd ed. Academic; 2004.
5.
Watson JD, Crick FHC. 2. A Structure for Deoxyribose Nucleic Acid. Published online 1953. https://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/articles/171737a0.pdf
6.
Nelson HCM, Finch JT, Luisi BF, Klug A. 3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications. Nature. 1987;330(6145):221-226. http://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/nature/journal/v330/n6145/abs/330221a0.html
7.
Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. 4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nature Reviews Molecular Cell Biology. 2017;18(5):279-284. doi:10.1038/nrm.2017.3
8.
Chandrasekaran AR, Anderson N, Kizer M, Halvorsen K, Wang X. 5. Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem. 2016;17(12):1081-1089. doi:10.1002/cbic.201600038
9.
Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. 6. Origins of Specificity in Protein-DNA Recognition. Annual Review of Biochemistry. 2010;79(1):233-269. doi:10.1146/annurev-biochem-060408-091030
10.
Rice PA, Yang S wei, Mizuuchi K, Nash HA. 7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn. Cell. 1996;87(7):1295-1306. doi:10.1016/S0092-8674(00)81824-3
11.
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein–DNA recognition specificity. Nucleic Acids Research. 2018;46(10):4845-4871. doi:10.1093/nar/gky289
12.
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell. 2018;172(6):1239-1259. doi:10.1016/j.cell.2017.11.032
13.
Gilbert N, Allan J. Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development. 2014;25:15-21. doi:10.1016/j.gde.2013.10.013
14.
Schoeffler AJ, Berger JM. 11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics. 2008;41(01). doi:10.1017/S003358350800468X
15.
Nogales E, Louder RK, He Y. 12. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Annual Review of Biophysics. 2017;46(1):59-83. doi:10.1146/annurev-biophys-070816-033751
16.
Nudler E. 13. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annual Review of Biochemistry. 2009;78(1):335-361. doi:10.1146/annurev.biochem.76.052705.164655
17.
Lelli KM, Slattery M, Mann RS. 14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation. Annual Review of Genetics. 2012;46(1):43-68. doi:10.1146/annurev-genet-110711-155437
18.
Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nature Reviews Genetics. 2018;19(12):789-800. doi:10.1038/s41576-018-0060-8
19.
Clapier CR, Iwasa J, Cairns BR, Peterson CL. 16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology. 2017;18(7):407-422. doi:10.1038/nrm.2017.26
20.
Uhlmann F. 17. SMC complexes: from DNA to chromosomes. Nature Reviews Molecular Cell Biology. 2016;17(7):399-412. doi:10.1038/nrm.2016.30
21.
Pomerantz RT, O’Donnell M. 18. Replisome mechanics: insights into a twin DNA polymerase machine. Trends in Microbiology. 2007;15(4):156-164. doi:10.1016/j.tim.2007.02.007
22.
Renkawitz J, Lademann CA, Jentsch S. 19. Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology. 2014;15(6):369-383. doi:10.1038/nrm3805
23.
Kaniecki K, De Tullio L, Greene EC. A change of view: homologous recombination at single-molecule resolution. Nature Reviews Genetics. 2017;19(4):191-207. doi:10.1038/nrg.2017.92
24.
Wigley DB. 21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nature Reviews Microbiology. 2012;11(1):9-13. doi:10.1038/nrmicro2917
25.
Lesbats P, Engelman AN, Cherepanov P. 23. Retroviral DNA Integration. Chemical Reviews. 2016;116(20):12730-12757. doi:10.1021/acs.chemrev.6b00125
26.
Liu D, Keijzers G, Rasmussen LJ. 24. DNA mismatch repair and its many roles in eukaryotic cells. Mutation Research/Reviews in Mutation Research. 2017;773:174-187. doi:10.1016/j.mrrev.2017.07.001
27.
Goodarzi AA, Jeggo PA. 25. The Repair and Signaling Responses to DNA Double-Strand Breaks. Adv Genet. 2013;82:1-45. doi:10.1016/B978-0-12-407676-1.00001-9
28.
Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ. 26. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology. 2014;15(7):465-481. doi:10.1038/nrm3822
29.
Pennisi E. DNA’s Cast of Thousands. Science. 2003;300(5617):282-285. doi:10.1126/science.300.5617.282
30.
Abe N, Dror I, Yang L, et al. Deconvolving the Recognition of DNA Shape from Sequence. Cell. 2015;161(2):307-318. doi:10.1016/j.cell.2015.02.008
31.
Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Current Opinion in Structural Biology. 2004;14(1):28-35. doi:10.1016/j.sbi.2003.12.003
32.
Ledford H. Five big mysteries about CRISPR’s origins. Nature. 2017;541(7637):280-282. doi:10.1038/541280a
33.
Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications. 2018;9(1). doi:10.1038/s41467-018-04252-2
34.
Chen SH, Chan NL, Hsieh T shih. New Mechanistic and Functional Insights into DNA Topoisomerases. Annual Review of Biochemistry. 2013;82(1):139-170. doi:10.1146/annurev-biochem-061809-100002
35.
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014;15(11):703-708. doi:10.1038/nrm3890
36.
Doublié S, Zahn KE. Structural insights into eukaryotic DNA replication. Frontiers in Microbiology. 2014;5. doi:10.3389/fmicb.2014.00444
37.
West SC. The search for a human Holliday junction resolvase. Biochemical Society Transactions. 2009;37(3):519-526. doi:10.1042/BST0370519
38.
Montaño SP, Rice PA. Moving DNA around: DNA transposition and retroviral integration. Current Opinion in Structural Biology. 2011;21(3):370-378. doi:10.1016/j.sbi.2011.03.004
39.
Modrich P. Mechanisms in                              and Human Mismatch Repair (Nobel Lecture). Angewandte Chemie International Edition. 2016;55(30):8490-8501. doi:10.1002/anie.201601412
40.
Deindl S, Hwang WL, Hota SK, et al. ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell. 2013;152(3):442-452. doi:10.1016/j.cell.2012.12.040
41.
Graham JE, Marians KJ, Kowalczykowski SC. Independent and Stochastic Action of DNA Polymerases in the Replisome. Cell. 2017;169(7):1201-1213.e17. doi:10.1016/j.cell.2017.05.041
42.
Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC. The condensin complex is a mechanochemical motor that translocates along DNA. Science. 2017;358(6363):672-676. doi:10.1126/science.aan6516
43.
Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Molecular Cancer. 2017;16(1). doi:10.1186/s12943-017-0741-5
44.
M Ryan Corces et al. The chromatin accessibility landscape of primary human cancers. Science. Published online 2018. http://science.sciencemag.org/content/362/6413/eaav1898.long
45.
Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Structures of the CRISPR genome integration complex. Science. 2017;357(6356):1113-1118. doi:10.1126/science.aao0679
46.
Ludmil B Alexandrov et al. Mutational signatures associated with tobacco smoking in human cancer. Mutational signatures associated with tobacco smoking in human cancer. Published online 2016. http://ezproxy.lib.gla.ac.uk/login?url=http://science.sciencemag.org/content/354/6312/618.long
47.
Ludmil B Alexandrov. Understanding the origins of human cancer. Science. Published online 2018. http://science.sciencemag.org/content/350/6265/1175.1.long
48.
Zhao W, Steinfeld JB, Liang F, et al. BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017;550(7676):360-365. doi:10.1038/nature24060
49.
Cejka P. Biochemistry: Complex assistance for DNA invasion. Nature. Published online 4 October 2017. doi:10.1038/nature24149