[1]
H. F. Lodish, Molecular cell biology, 7th ed., International ed. New York: W.H. Freeman and Company, 2013.
[2]
B. Alberts, Molecular biology of the cell, Sixth edition. New York, NY: Garland Science, Taylor and Francis Group, 2015.
[3]
J. E. Krebs, E. S. Goldstein, and S. T. Kilpatrick, Lewin’s genes XII, 12th ed. Burlington, Mass: Jones & Bartlett Learning, 2018.
[4]
C. R. Calladine, 1. Understanding DNA: the molecule & how it works, 3rd ed. San Diego, Calif: Academic, 2004.
[5]
J. D. Watson and F. H. C. Crick, ‘2. A Structure for Deoxyribose Nucleic Acid’, 1953 [Online]. Available: https://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/articles/171737a0.pdf
[6]
H. C. M. Nelson, J. T. Finch, B. F. Luisi, and A. Klug, ‘3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications’, Nature, vol. 330, no. 6145, pp. 221–226, Nov. 1987 [Online]. Available: http://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/nature/journal/v330/n6145/abs/330221a0.html
[7]
R. Hänsel-Hertsch, M. Di Antonio, and S. Balasubramanian, ‘4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential’, Nature Reviews Molecular Cell Biology, vol. 18, no. 5, pp. 279–284, Feb. 2017, doi: 10.1038/nrm.2017.3.
[8]
A. R. Chandrasekaran, N. Anderson, M. Kizer, K. Halvorsen, and X. Wang, ‘5. Beyond the Fold: Emerging Biological Applications of DNA Origami’, ChemBioChem, vol. 17, no. 12, pp. 1081–1089, Jun. 2016, doi: 10.1002/cbic.201600038.
[9]
R. Rohs, X. Jin, S. M. West, R. Joshi, B. Honig, and R. S. Mann, ‘6. Origins of Specificity in Protein-DNA Recognition’, Annual Review of Biochemistry, vol. 79, no. 1, pp. 233–269, Jun. 2010, doi: 10.1146/annurev-biochem-060408-091030.
[10]
P. A. Rice, S. Yang, K. Mizuuchi, and H. A. Nash, ‘7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn’, Cell, vol. 87, no. 7, pp. 1295–1306, Dec. 1996, doi: 10.1016/S0092-8674(00)81824-3.
[11]
A. J. Bogdanove, A. Bohm, J. C. Miller, R. D. Morgan, and B. L. Stoddard, ‘Engineering altered protein–DNA recognition specificity’, Nucleic Acids Research, vol. 46, no. 10, pp. 4845–4871, Jun. 2018, doi: 10.1093/nar/gky289.
[12]
F. Hille, H. Richter, S. P. Wong, M. Bratovič, S. Ressel, and E. Charpentier, ‘The Biology of CRISPR-Cas: Backward and Forward’, Cell, vol. 172, no. 6, pp. 1239–1259, Mar. 2018, doi: 10.1016/j.cell.2017.11.032.
[13]
N. Gilbert and J. Allan, ‘Supercoiling in DNA and chromatin’, Current Opinion in Genetics & Development, vol. 25, pp. 15–21, Apr. 2014, doi: 10.1016/j.gde.2013.10.013.
[14]
A. J. Schoeffler and J. M. Berger, ‘11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology’, Quarterly Reviews of Biophysics, vol. 41, no. 01, Feb. 2008, doi: 10.1017/S003358350800468X.
[15]
E. Nogales, R. K. Louder, and Y. He, ‘12. Structural Insights into the Eukaryotic Transcription Initiation Machinery’, Annual Review of Biophysics, vol. 46, no. 1, pp. 59–83, May 2017, doi: 10.1146/annurev-biophys-070816-033751.
[16]
E. Nudler, ‘13. RNA Polymerase Active Center: The Molecular Engine of Transcription’, Annual Review of Biochemistry, vol. 78, no. 1, pp. 335–361, Jun. 2009, doi: 10.1146/annurev.biochem.76.052705.164655.
[17]
K. M. Lelli, M. Slattery, and R. S. Mann, ‘14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation’, Annual Review of Genetics, vol. 46, no. 1, pp. 43–68, Dec. 2012, doi: 10.1146/annurev-genet-110711-155437.
[18]
M. J. Rowley and V. G. Corces, ‘Organizational principles of 3D genome architecture’, Nature Reviews Genetics, vol. 19, no. 12, pp. 789–800, Dec. 2018, doi: 10.1038/s41576-018-0060-8.
[19]
C. R. Clapier, J. Iwasa, B. R. Cairns, and C. L. Peterson, ‘16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes’, Nature Reviews Molecular Cell Biology, vol. 18, no. 7, pp. 407–422, May 2017, doi: 10.1038/nrm.2017.26.
[20]
F. Uhlmann, ‘17. SMC complexes: from DNA to chromosomes’, Nature Reviews Molecular Cell Biology, vol. 17, no. 7, pp. 399–412, Apr. 2016, doi: 10.1038/nrm.2016.30.
[21]
R. T. Pomerantz and M. O’Donnell, ‘18. Replisome mechanics: insights into a twin DNA polymerase machine’, Trends in Microbiology, vol. 15, no. 4, pp. 156–164, Apr. 2007, doi: 10.1016/j.tim.2007.02.007.
[22]
J. Renkawitz, C. A. Lademann, and S. Jentsch, ‘19. Mechanisms and principles of homology search during recombination’, Nature Reviews Molecular Cell Biology, vol. 15, no. 6, pp. 369–383, May 2014, doi: 10.1038/nrm3805.
[23]
K. Kaniecki, L. De Tullio, and E. C. Greene, ‘A change of view: homologous recombination at single-molecule resolution’, Nature Reviews Genetics, vol. 19, no. 4, pp. 191–207, Dec. 2017, doi: 10.1038/nrg.2017.92.
[24]
D. B. Wigley, ‘21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB’, Nature Reviews Microbiology, vol. 11, no. 1, pp. 9–13, Dec. 2012, doi: 10.1038/nrmicro2917.
[25]
P. Lesbats, A. N. Engelman, and P. Cherepanov, ‘23. Retroviral DNA Integration’, Chemical Reviews, vol. 116, no. 20, pp. 12730–12757, Oct. 2016, doi: 10.1021/acs.chemrev.6b00125.
[26]
D. Liu, G. Keijzers, and L. J. Rasmussen, ‘24. DNA mismatch repair and its many roles in eukaryotic cells’, Mutation Research/Reviews in Mutation Research, vol. 773, pp. 174–187, Jul. 2017, doi: 10.1016/j.mrrev.2017.07.001.
[27]
A. A. Goodarzi and P. A. Jeggo, ‘25. The Repair and Signaling Responses to DNA Double-Strand Breaks’, Adv Genet, vol. 82, pp. 1–45, 2013, doi: 10.1016/B978-0-12-407676-1.00001-9. [Online]. Available: http://ezproxy.lib.gla.ac.uk/login?url=http://linkinghub.elsevier.com/retrieve/pii/B9780124076761000019
[28]
J. A. Marteijn, H. Lans, W. Vermeulen, and J. H. J. Hoeijmakers, ‘26. Understanding nucleotide excision repair and its roles in cancer and ageing’, Nature Reviews Molecular Cell Biology, vol. 15, no. 7, pp. 465–481, Jun. 2014, doi: 10.1038/nrm3822.
[29]
E. Pennisi, ‘DNA’s Cast of Thousands’, Science, vol. 300, no. 5617, pp. 282–285, Apr. 2003, doi: 10.1126/science.300.5617.282.
[30]
N. Abe et al., ‘Deconvolving the Recognition of DNA Shape from Sequence’, Cell, vol. 161, no. 2, pp. 307–318, Apr. 2015, doi: 10.1016/j.cell.2015.02.008.
[31]
K. K. Swinger and P. A. Rice, ‘IHF and HU: flexible architects of bent DNA’, Current Opinion in Structural Biology, vol. 14, no. 1, pp. 28–35, Feb. 2004, doi: 10.1016/j.sbi.2003.12.003.
[32]
H. Ledford, ‘Five big mysteries about CRISPR’s origins’, Nature, vol. 541, no. 7637, pp. 280–282, Jan. 2017, doi: 10.1038/541280a.
[33]
M. Adli, ‘The CRISPR tool kit for genome editing and beyond’, Nature Communications, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-04252-2.
[34]
S. H. Chen, N.-L. Chan, and T. Hsieh, ‘New Mechanistic and Functional Insights into DNA Topoisomerases’, Annual Review of Biochemistry, vol. 82, no. 1, pp. 139–170, Jun. 2013, doi: 10.1146/annurev-biochem-061809-100002.
[35]
P. Tessarz and T. Kouzarides, ‘Histone core modifications regulating nucleosome structure and dynamics’, Nature Reviews Molecular Cell Biology, vol. 15, no. 11, pp. 703–708, Oct. 2014, doi: 10.1038/nrm3890.
[36]
S. Doublié and K. E. Zahn, ‘Structural insights into eukaryotic DNA replication’, Frontiers in Microbiology, vol. 5, Aug. 2014, doi: 10.3389/fmicb.2014.00444.
[37]
S. C. West, ‘The search for a human Holliday junction resolvase’, Biochemical Society Transactions, vol. 37, no. 3, pp. 519–526, Jun. 2009, doi: 10.1042/BST0370519.
[38]
S. P. Montaño and P. A. Rice, ‘Moving DNA around: DNA transposition and retroviral integration’, Current Opinion in Structural Biology, vol. 21, no. 3, pp. 370–378, Jun. 2011, doi: 10.1016/j.sbi.2011.03.004.
[39]
P. Modrich, ‘Mechanisms in                              and Human Mismatch Repair (Nobel Lecture)’, Angewandte Chemie International Edition, vol. 55, no. 30, pp. 8490–8501, Jul. 2016, doi: 10.1002/anie.201601412.
[40]
S. Deindl et al., ‘ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps’, Cell, vol. 152, no. 3, pp. 442–452, Jan. 2013, doi: 10.1016/j.cell.2012.12.040.
[41]
J. E. Graham, K. J. Marians, and S. C. Kowalczykowski, ‘Independent and Stochastic Action of DNA Polymerases in the Replisome’, Cell, vol. 169, no. 7, pp. 1201-1213.e17, Jun. 2017, doi: 10.1016/j.cell.2017.05.041.
[42]
T. Terakawa, S. Bisht, J. M. Eeftens, C. Dekker, C. H. Haering, and E. C. Greene, ‘The condensin complex is a mechanochemical motor that translocates along DNA’, Science, vol. 358, no. 6363, pp. 672–676, Nov. 2017, doi: 10.1126/science.aan6516.
[43]
R. Jia, P. Chai, H. Zhang, and X. Fan, ‘Novel insights into chromosomal conformations in cancer’, Molecular Cancer, vol. 16, no. 1, Dec. 2017, doi: 10.1186/s12943-017-0741-5.
[44]
M Ryan Corces et al., ‘The chromatin accessibility landscape of primary human cancers’, Science, 2018 [Online]. Available: http://science.sciencemag.org/content/362/6413/eaav1898.long
[45]
A. V. Wright, J.-J. Liu, G. J. Knott, K. W. Doxzen, E. Nogales, and J. A. Doudna, ‘Structures of the CRISPR genome integration complex’, Science, vol. 357, no. 6356, pp. 1113–1118, Sep. 2017, doi: 10.1126/science.aao0679.
[46]
Ludmil B Alexandrov et al., ‘Mutational signatures associated with tobacco smoking in human cancer’, Mutational signatures associated with tobacco smoking in human cancer, 2016 [Online]. Available: http://ezproxy.lib.gla.ac.uk/login?url=http://science.sciencemag.org/content/354/6312/618.long
[47]
Ludmil B Alexandrov, ‘Understanding the origins of human cancer’, Science, 2018 [Online]. Available: http://science.sciencemag.org/content/350/6265/1175.1.long
[48]
W. Zhao et al., ‘BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing’, Nature, vol. 550, no. 7676, pp. 360–365, Oct. 2017, doi: 10.1038/nature24060.
[49]
P. Cejka, ‘Biochemistry: Complex assistance for DNA invasion’, Nature, Oct. 2017, doi: 10.1038/nature24149.