Abe, N. et al. (2015) ‘Deconvolving the Recognition of DNA Shape from Sequence’, Cell, 161(2), pp. 307–318. Available at: https://doi.org/10.1016/j.cell.2015.02.008.
Adli, M. (2018) ‘The CRISPR tool kit for genome editing and beyond’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-04252-2.
Alberts, B. (2015) Molecular biology of the cell. Sixth edition. New York, NY: Garland Science, Taylor and Francis Group.
Bogdanove, A.J. et al. (2018) ‘Engineering altered protein–DNA recognition specificity’, Nucleic Acids Research, 46(10), pp. 4845–4871. Available at: https://doi.org/10.1093/nar/gky289.
Calladine, C.R. (2004) 1. Understanding DNA: the molecule & how it works. 3rd ed. San Diego, Calif: Academic.
Cejka, P. (2017) ‘Biochemistry: Complex assistance for DNA invasion’, Nature [Preprint]. Available at: https://doi.org/10.1038/nature24149.
Chandrasekaran, A.R. et al. (2016) ‘5. Beyond the Fold: Emerging Biological Applications of DNA Origami’, ChemBioChem, 17(12), pp. 1081–1089. Available at: https://doi.org/10.1002/cbic.201600038.
Chen, S.H., Chan, N.-L. and Hsieh, T. (2013) ‘New Mechanistic and Functional Insights into DNA Topoisomerases’, Annual Review of Biochemistry, 82(1), pp. 139–170. Available at: https://doi.org/10.1146/annurev-biochem-061809-100002.
Clapier, C.R. et al. (2017) ‘16. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes’, Nature Reviews Molecular Cell Biology, 18(7), pp. 407–422. Available at: https://doi.org/10.1038/nrm.2017.26.
Deindl, S. et al. (2013) ‘ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps’, Cell, 152(3), pp. 442–452. Available at: https://doi.org/10.1016/j.cell.2012.12.040.
Doublié, S. and Zahn, K.E. (2014) ‘Structural insights into eukaryotic DNA replication’, Frontiers in Microbiology, 5. Available at: https://doi.org/10.3389/fmicb.2014.00444.
Gilbert, N. and Allan, J. (2014) ‘Supercoiling in DNA and chromatin’, Current Opinion in Genetics & Development, 25, pp. 15–21. Available at: https://doi.org/10.1016/j.gde.2013.10.013.
Goodarzi, A.A. and Jeggo, P.A. (2013) ‘25. The Repair and Signaling Responses to DNA Double-Strand Breaks’, Adv Genet, 82, pp. 1–45. Available at: https://doi.org/10.1016/B978-0-12-407676-1.00001-9.
Graham, J.E., Marians, K.J. and Kowalczykowski, S.C. (2017) ‘Independent and Stochastic Action of DNA Polymerases in the Replisome’, Cell, 169(7), pp. 1201-1213.e17. Available at: https://doi.org/10.1016/j.cell.2017.05.041.
Hänsel-Hertsch, R., Di Antonio, M. and Balasubramanian, S. (2017) ‘4. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential’, Nature Reviews Molecular Cell Biology, 18(5), pp. 279–284. Available at: https://doi.org/10.1038/nrm.2017.3.
Hille, F. et al. (2018) ‘The Biology of CRISPR-Cas: Backward and Forward’, Cell, 172(6), pp. 1239–1259. Available at: https://doi.org/10.1016/j.cell.2017.11.032.
Jia, R. et al. (2017) ‘Novel insights into chromosomal conformations in cancer’, Molecular Cancer, 16(1). Available at: https://doi.org/10.1186/s12943-017-0741-5.
Kaniecki, K., De Tullio, L. and Greene, E.C. (2017) ‘A change of view: homologous recombination at single-molecule resolution’, Nature Reviews Genetics, 19(4), pp. 191–207. Available at: https://doi.org/10.1038/nrg.2017.92.
Krebs, J.E., Goldstein, E.S. and Kilpatrick, S.T. (2018) Lewin’s genes XII. 12th ed. Burlington, Mass: Jones & Bartlett Learning.
Ledford, H. (2017) ‘Five big mysteries about CRISPR’s origins’, Nature, 541(7637), pp. 280–282. Available at: https://doi.org/10.1038/541280a.
Lelli, K.M., Slattery, M. and Mann, R.S. (2012) ‘14. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation’, Annual Review of Genetics, 46(1), pp. 43–68. Available at: https://doi.org/10.1146/annurev-genet-110711-155437.
Lesbats, P., Engelman, A.N. and Cherepanov, P. (2016) ‘23. Retroviral DNA Integration’, Chemical Reviews, 116(20), pp. 12730–12757. Available at: https://doi.org/10.1021/acs.chemrev.6b00125.
Liu, D., Keijzers, G. and Rasmussen, L.J. (2017) ‘24. DNA mismatch repair and its many roles in eukaryotic cells’, Mutation Research/Reviews in Mutation Research, 773, pp. 174–187. Available at: https://doi.org/10.1016/j.mrrev.2017.07.001.
Lodish, H.F. (2013) Molecular cell biology. 7th ed., international ed. New York: W.H. Freeman and Company.
Ludmil B Alexandrov (2018) ‘Understanding the origins of human cancer’, Science [Preprint]. Available at: http://science.sciencemag.org/content/350/6265/1175.1.long.
Ludmil B Alexandrov et al. (2016) ‘Mutational signatures associated with tobacco smoking in human cancer’, Mutational signatures associated with tobacco smoking in human cancer [Preprint]. Available at: http://ezproxy.lib.gla.ac.uk/login?url=http://science.sciencemag.org/content/354/6312/618.long.
M Ryan Corces et al. (2018) ‘The chromatin accessibility landscape of primary human cancers’, Science [Preprint]. Available at: http://science.sciencemag.org/content/362/6413/eaav1898.long.
Marteijn, J.A. et al. (2014) ‘26. Understanding nucleotide excision repair and its roles in cancer and ageing’, Nature Reviews Molecular Cell Biology, 15(7), pp. 465–481. Available at: https://doi.org/10.1038/nrm3822.
Modrich, P. (2016) ‘Mechanisms in                              and Human Mismatch Repair (Nobel Lecture)’, Angewandte Chemie International Edition, 55(30), pp. 8490–8501. Available at: https://doi.org/10.1002/anie.201601412.
Montaño, S.P. and Rice, P.A. (2011) ‘Moving DNA around: DNA transposition and retroviral integration’, Current Opinion in Structural Biology, 21(3), pp. 370–378. Available at: https://doi.org/10.1016/j.sbi.2011.03.004.
Nelson, H.C.M. et al. (1987) ‘3. The structure of an oligo(dA)-oligo(dT) tract and its biological implications’, Nature, 330(6145), pp. 221–226. Available at: http://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/nature/journal/v330/n6145/abs/330221a0.html.
Nogales, E., Louder, R.K. and He, Y. (2017) ‘12. Structural Insights into the Eukaryotic Transcription Initiation Machinery’, Annual Review of Biophysics, 46(1), pp. 59–83. Available at: https://doi.org/10.1146/annurev-biophys-070816-033751.
Nudler, E. (2009) ‘13. RNA Polymerase Active Center: The Molecular Engine of Transcription’, Annual Review of Biochemistry, 78(1), pp. 335–361. Available at: https://doi.org/10.1146/annurev.biochem.76.052705.164655.
Pennisi, E. (2003) ‘DNA’s Cast of Thousands’, Science, 300(5617), pp. 282–285. Available at: https://doi.org/10.1126/science.300.5617.282.
Pomerantz, R.T. and O’Donnell, M. (2007) ‘18. Replisome mechanics: insights into a twin DNA polymerase machine’, Trends in Microbiology, 15(4), pp. 156–164. Available at: https://doi.org/10.1016/j.tim.2007.02.007.
Renkawitz, J., Lademann, C.A. and Jentsch, S. (2014) ‘19. Mechanisms and principles of homology search during recombination’, Nature Reviews Molecular Cell Biology, 15(6), pp. 369–383. Available at: https://doi.org/10.1038/nrm3805.
Rice, P.A. et al. (1996) ‘7. Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn’, Cell, 87(7), pp. 1295–1306. Available at: https://doi.org/10.1016/S0092-8674(00)81824-3.
Rohs, R. et al. (2010) ‘6. Origins of Specificity in Protein-DNA Recognition’, Annual Review of Biochemistry, 79(1), pp. 233–269. Available at: https://doi.org/10.1146/annurev-biochem-060408-091030.
Rowley, M.J. and Corces, V.G. (2018) ‘Organizational principles of 3D genome architecture’, Nature Reviews Genetics, 19(12), pp. 789–800. Available at: https://doi.org/10.1038/s41576-018-0060-8.
Schoeffler, A.J. and Berger, J.M. (2008) ‘11. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology’, Quarterly Reviews of Biophysics, 41(01). Available at: https://doi.org/10.1017/S003358350800468X.
Swinger, K.K. and Rice, P.A. (2004) ‘IHF and HU: flexible architects of bent DNA’, Current Opinion in Structural Biology, 14(1), pp. 28–35. Available at: https://doi.org/10.1016/j.sbi.2003.12.003.
Terakawa, T. et al. (2017) ‘The condensin complex is a mechanochemical motor that translocates along DNA’, Science, 358(6363), pp. 672–676. Available at: https://doi.org/10.1126/science.aan6516.
Tessarz, P. and Kouzarides, T. (2014) ‘Histone core modifications regulating nucleosome structure and dynamics’, Nature Reviews Molecular Cell Biology, 15(11), pp. 703–708. Available at: https://doi.org/10.1038/nrm3890.
Uhlmann, F. (2016) ‘17. SMC complexes: from DNA to chromosomes’, Nature Reviews Molecular Cell Biology, 17(7), pp. 399–412. Available at: https://doi.org/10.1038/nrm.2016.30.
Watson, J.D. and Crick, F.H.C. (1953) ‘2. A Structure for Deoxyribose Nucleic Acid’. Available at: https://ezproxy.lib.gla.ac.uk/login?url=https://www.nature.com/articles/171737a0.pdf.
West, S.C. (2009) ‘The search for a human Holliday junction resolvase’, Biochemical Society Transactions, 37(3), pp. 519–526. Available at: https://doi.org/10.1042/BST0370519.
Wigley, D.B. (2012) ‘21. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB’, Nature Reviews Microbiology, 11(1), pp. 9–13. Available at: https://doi.org/10.1038/nrmicro2917.
Wright, A.V. et al. (2017) ‘Structures of the CRISPR genome integration complex’, Science, 357(6356), pp. 1113–1118. Available at: https://doi.org/10.1126/science.aao0679.
Zhao, W. et al. (2017) ‘BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing’, Nature, 550(7676), pp. 360–365. Available at: https://doi.org/10.1038/nature24060.